1
|
Xiang C, Pu C, Zhong X, Wang Y, Song W, Wang X, Chen K, Li K, Luo Y, Jiang K, Jiang D. Functional hydrogels promote chronic infectious wound healing by re-rousing macrophage M1 and inducing bacterial copper-like death. Mater Today Bio 2025; 31:101571. [PMID: 40051527 PMCID: PMC11883446 DOI: 10.1016/j.mtbio.2025.101571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/31/2025] [Accepted: 02/09/2025] [Indexed: 03/09/2025] Open
Abstract
Traditional antibiotics are often ineffective against biofilm-associated infections, and biofilm-induced macrophage immune evasion directly halts the wound healing process. Disrupting biofilms and regulating macrophage immune functions are critical to improving wound healing. In this study, we synthesized g-C3N4 with peroxidase (POD) enzyme activity via thermal polymerization and copper alginate microspheres (CAM) via gas cutting. These were co-encapsulated into GelMA hydrogels to form a functionalized wound repair system (GelMA/CAM@g-C3N4) with both anti-biofilm and local immune microenvironment remodeling capabilities. In vitro, this system exhibited excellent biocompatibility and promoted endothelial cell migration, vascular formation, and CD31 expression. It also polarized macrophages toward the M1 phenotype, restoring their pro-inflammatory functions, upregulating inflammatory cytokines (IL-1, IL-6, TNF-α), and inhibiting Staphylococcus aureus and Escherichia coli. In vivo, the system suppressed S. aureus growth, promoted angiogenesis and collagen deposition, and reshaped the pathological microenvironment to achieve wound repair and regeneration. Conclusions: This system offers a new therapeutic strategy for chronic infectious wounds.
Collapse
Affiliation(s)
- Chao Xiang
- Department of Orthopedics, The Third Affiliated Hospital of Chongqing Medical University, 401120, Chongqing, China
- Department of Orthopedics, The Affiliated Hospital of North Sichuan Medical College, 637000, Nanchong, China
| | - Chaoyu Pu
- Department of Orthopedics, The Third Affiliated Hospital of Chongqing Medical University, 401120, Chongqing, China
- Department of Orthopedics, The Affiliated Hospital of North Sichuan Medical College, 637000, Nanchong, China
| | - XueMei Zhong
- School of Clinical Medicine, Chongqing Medical and Pharmaceutical College, Chongqing, 401331, China
| | - Yong Wang
- Department of Orthopedics, The Affiliated Hospital of North Sichuan Medical College, 637000, Nanchong, China
| | - Weiyong Song
- Department of Orthopedics, The Affiliated Hospital of North Sichuan Medical College, 637000, Nanchong, China
| | - Xingkuan Wang
- Department of Orthopedics, The Affiliated Hospital of North Sichuan Medical College, 637000, Nanchong, China
| | - Kemiao Chen
- Chongqing Medical University, 401120, Chongqing, China
| | - Kai Li
- Department of Orthopedics, The Third Affiliated Hospital of Chongqing Medical University, 401120, Chongqing, China
| | - Yue Luo
- Department of Orthopedics, The Affiliated Hospital of North Sichuan Medical College, 637000, Nanchong, China
| | - Ke Jiang
- Department of Orthopedics, The Affiliated Hospital of North Sichuan Medical College, 637000, Nanchong, China
| | - Dianming Jiang
- Department of Orthopedics, The Third Affiliated Hospital of Chongqing Medical University, 401120, Chongqing, China
| |
Collapse
|
2
|
Chusak C, Balmori V, Kamonsuwan K, Suklaew PO, Adisakwattana S. Enhancing Viability of Lactobacillus rhamnosus GG and Total Polyphenol Content in Fermented Black Goji Berry Beverage Through Calcium-Alginate Encapsulation with Hydrocolloids. Foods 2025; 14:518. [PMID: 39942111 PMCID: PMC11817805 DOI: 10.3390/foods14030518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/22/2025] [Accepted: 02/04/2025] [Indexed: 02/16/2025] Open
Abstract
Encapsulation techniques play a crucial role in enhancing the stability and viability of probiotics in functional foods. This study investigates the efficacy of calcium-alginate encapsulation, combined with hydrocolloids such as carrageenan, agar, and gelatin, in improving the survival of Lactobacillus rhamnosus GG (LGG) and stabilizing the total phenolic content (TPC) in fermented black goji berry beverages. The results revealed that 1.5% alginate encapsulation, combined with 1% carrageenan, agar, or gelatin and 5% calcium, significantly enhanced the LGG viability and increased the TPC content in the fermented black goji berry beads when compared to calcium-alginate encapsulation alone. Fourier Transform Infrared Spectroscopy (FTIR) confirmed the successful incorporation and interaction of hydrocolloids within the encapsulation matrix. Among the formulations, calcium-alginate-gelatin beads exhibited the highest LGG survival rates after simulated gastric and intestinal digestion. Notably, calcium-alginate beads containing carrageenan preserved LGG viability during simulated gastric and intestinal conditions when co-digested with all tested milk types (high carbohydrate, high protein, and high fat). Co-ingestion with these milk types further improved TPC retention in all bead formulations, as the macronutrients in milk provided protective effects, stabilizing the encapsulated polyphenols and minimizing their degradation during simulated gastric and intestinal digestion. This study highlights the potential of calcium-alginate encapsulation, integrated with hydrocolloids such as carrageenan, agar, or gelatin, to improve probiotic viability and polyphenol stability, offering promising applications for enhancing the functional properties of non-dairy fermented beverages.
Collapse
Affiliation(s)
- Charoonsri Chusak
- Center of Excellence in Phytochemical and Functional Food for Clinical Nutrition, Department of Nutrition and Dietetics, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (C.C.); (K.K.); (S.A.)
| | - Vernabelle Balmori
- Department of Food Science and Technology, Southern Leyte State University, Southern Leyte 6606, Philippines;
| | - Kritmongkhon Kamonsuwan
- Center of Excellence in Phytochemical and Functional Food for Clinical Nutrition, Department of Nutrition and Dietetics, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (C.C.); (K.K.); (S.A.)
| | - Phim on Suklaew
- Department of Home Economics, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand
| | - Sirichai Adisakwattana
- Center of Excellence in Phytochemical and Functional Food for Clinical Nutrition, Department of Nutrition and Dietetics, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (C.C.); (K.K.); (S.A.)
| |
Collapse
|
3
|
Wu Y, Chen Y, Lv B, Wang B, Choi S, Bai N, Liu Z, Chen XD, Cheng Y. Thermoresponsive Phase Change Oleogel Microcapsules for Coencapsulation of Hydrophilic and Hydrophobic Actives. ACS APPLIED MATERIALS & INTERFACES 2024; 16:68348-68357. [PMID: 39600240 DOI: 10.1021/acsami.4c15064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
To address the concurrent needs of the personal care industry for simultaneous protection of active ingredients and enhancement of product functionality, this study employs a microfluidic technique to fabricate EstoGel M-based oleogel microcapsules capable of coencapsulating both hydrophilic and hydrophobic actives. The oleogels exhibit gel-like characteristics with a melting point of approximately 70 °C, ensuring high encapsulation efficiency for hydrophilic and hydrophobic actives within aqueous environments. The oleogel microspheres encapsulating hydrophobic actives are prepared using microfluidic technology with robust elasticity, which can be ruptured by a force of less than 15 mN, contributing to a favorable tactile sensation upon application. The structural integrity of these microspheres is preserved within a temperature range up to 70 °C, indicating their thermodynamic stability. In addition, oleogel microcapsules are prepared using microfluidic technology, and their effectiveness in coencapsulating hydrophilic and hydrophobic active ingredients is successfully demonstrated, along with excellent skin feel and temperature stability. The exceptional tactile properties of EstoGel M-based oleogel microcapsules offer a promising strategy for creating innovative personal care products that integrate high encapsulation efficiency with multifunctional attributes.
Collapse
Affiliation(s)
- Yuting Wu
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yuxin Chen
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Boya Lv
- Life Quality Engineering Interest Group, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering, and Materials Science, Soochow University, Suzhou, Jiangsu Province 215152, China
- Xiao Dong Pro-health (Suzhou) Instrumentation Co., Ltd., Suzhou, Jiangsu Province 215152, China
| | - Bo Wang
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Seojin Choi
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Ningyuan Bai
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Zhe Liu
- Bloomage Biotechnology Co., Ltd., Jinan, Shandong Province 250000, China
| | - Xiao Dong Chen
- Life Quality Engineering Interest Group, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering, and Materials Science, Soochow University, Suzhou, Jiangsu Province 215152, China
| | - Yi Cheng
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
4
|
Xie X, Cui M, Wang T, Yang J, Li W, Wang K, Lin M. Constructing Stiff β-Sheet for Self-Reinforced Alginate Fibers. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3047. [PMID: 38998130 PMCID: PMC11242387 DOI: 10.3390/ma17133047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024]
Abstract
The application of alginate fibers is limited by relatively low mechanical properties. Herein, a self-reinforcing strategy inspired by nature is proposed to fabricate alginate fibers with minimal changes in the wet-spinning process. By adapting a coagulation bath composing of CaCl2 and ethanol, the secondary structure of sodium alginate (SA) was regulated during the fibrous formation. Ethanol mainly increased the content of β-sheet in SA. Rheological analysis revealed a reinforcing mechanism of stiff β-sheet for enhanced modulus and strength. In combination with Ca2+ crosslinking, the self-reinforced alginate fibers exhibited an increment of 39.0% in tensile strength and 71.9% in toughness. This work provides fundamental understanding for β-sheet structures in polysaccharides and a subsequent self-reinforcing mechanism. It is significant for synthesizing strong and tough materials. The self-reinforcing strategy involved no extra additives and preserved the degradability of the alginate. The reinforced alginate fibers exhibited promising potentials for biological applications.
Collapse
Affiliation(s)
- Xuelai Xie
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, China
| | - Min Cui
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, China
| | - Tianyuan Wang
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, China
| | - Jinhong Yang
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, China
| | - Wenli Li
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, China
| | - Kai Wang
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, China
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), Xi’an 710072, China
| | - Min Lin
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, China
| |
Collapse
|
5
|
Cui M, Liu S, Xie X, Yang J, Wang T, Jiao Y, Lin M, Sui K. Self-Assembly Reinforced Alginate Fibers for Enhanced Strength, Toughness, and Bone Regeneration. Biomacromolecules 2024; 25:3475-3485. [PMID: 38741285 DOI: 10.1021/acs.biomac.4c00091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Material reinforcement commonly exists in a contradiction between strength and toughness enhancement. Herein, a reinforced strategy through self-assembly is proposed for alginate fibers. Sodium alginate (SA) microstructures with regulated secondary structures are assembled in acidic and ethanol as reinforcing units for alginate fibers. Acidity increases the flexibility of the helix and contributes to enhanced extendibility. Ethanol is responsible for formation of a stiff β-sheet, which enhances the modulus and strength. The structurally engineered SA assembly exhibits robust mechanical compatibility, and thus reinforced alginate fibers possess an improved tensile strength of 2.1 times, a prolonged elongation of 1.5 times, and an enhanced toughness of 3.0 times compared with SA fibers without reinforcement. The reinforcement through self-assembly provides an understanding of strengthening and toughening mechanism based on secondary structures. Due to a similar modulus with bones, reinforced alginate fibers exhibit good efficacy in accelerating bone regeneration in vivo.
Collapse
Affiliation(s)
- Min Cui
- State Key Laboratory of Bio-Fibers and Eco-textiles, College of Materials Science and Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, P. R. China
| | - Shuwei Liu
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130012, P. R. China
| | - Xuelai Xie
- State Key Laboratory of Bio-Fibers and Eco-textiles, College of Materials Science and Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, P. R. China
| | - Jinhong Yang
- State Key Laboratory of Bio-Fibers and Eco-textiles, College of Materials Science and Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, P. R. China
| | - Tianyuan Wang
- State Key Laboratory of Bio-Fibers and Eco-textiles, College of Materials Science and Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, P. R. China
| | - Yuyang Jiao
- State Key Laboratory of Bio-Fibers and Eco-textiles, College of Materials Science and Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, P. R. China
| | - Min Lin
- State Key Laboratory of Bio-Fibers and Eco-textiles, College of Materials Science and Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, P. R. China
| | - Kunyan Sui
- State Key Laboratory of Bio-Fibers and Eco-textiles, College of Materials Science and Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, P. R. China
| |
Collapse
|
6
|
Zou Q, Duan H, Fang S, Sheng W, Li X, Stoika R, Finiuk N, Panchuk R, Liu K, Wang L. Fabrication of yeast β-glucan/sodium alginate/γ-polyglutamic acid composite particles for hemostasis and wound healing. Biomater Sci 2024; 12:2394-2407. [PMID: 38502151 DOI: 10.1039/d3bm02068a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Particles with a porous structure can lead to quick hemostasis and provide a good matrix for cell proliferation during wound healing. Recently, many particle-based wound healing materials have been clinically applied. However, these products show good hemostatic ability but with poor wound healing ability. To solve this problem, this study fabricated APGG composite particles using yeast β-glucan (obtained from Saccharomyces cerevisiae), sodium alginate, and γ-polyglutamic acid as the starting materials. The structure of yeast β-glucan was modified with many carboxymethyl groups to obtain carboxymethylated β-glucan, which could coordinate with Ca2+ ions to form a crosslinked structure. A morphology study indicated that the APGG particles showed an irregular spheroidal structure with a low density (<0.1 g cm-3) and high porosity (>40%). An in vitro study revealed that the particles exhibited a low BCI value, low hemolysis ratio, and good cytocompatibility against L929 cells. The APGG particles could quickly stop bleeding in a mouse liver injury model and exhibited better hemostatic ability than the commercially available product Celox. Furthermore, the APGG particles could accelerate the healing of non-infected wounds, and the expression levels of CD31, α-SMA, and VEGF related to angiogenesis were significantly enhanced.
Collapse
Affiliation(s)
- Qinglin Zou
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China.
| | - Hongdong Duan
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Shimin Fang
- School of Pharmaceutical sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Wenlong Sheng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China.
| | - Xiaobin Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China.
| | - Rostyslav Stoika
- Department of Regulation of Cell Proliferation and Apoptosis, Institute of Cell Biology, National Academy of Sciences of Ukraine, Lviv, Ukraine
| | - Nataliya Finiuk
- Department of Regulation of Cell Proliferation and Apoptosis, Institute of Cell Biology, National Academy of Sciences of Ukraine, Lviv, Ukraine
| | - Rostyslav Panchuk
- Department of Regulation of Cell Proliferation and Apoptosis, Institute of Cell Biology, National Academy of Sciences of Ukraine, Lviv, Ukraine
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China.
| | - Lizhen Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China.
| |
Collapse
|