1
|
Zhou C, He Q, Ding Y, Wang Q, Xian L, Peng X, Mao F, Luo Q, Yang Z, Yang P, Chen J. Myocardial work in idiopathic premature ventricular contractions: Assessing left ventricular function and prognosis. JOURNAL OF CLINICAL ULTRASOUND : JCU 2024; 52:1346-1354. [PMID: 39223778 DOI: 10.1002/jcu.23798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/12/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Premature ventricular contractions (PVCs) can lead to impairment of left ventricular function. The noninvasive myocardial work technique, which incorporates left ventricular afterload, represents a new method for assessing left ventricular functional. AIM The aim of this study is to explore the value of noninvasive myocardial work technique in assessing left ventricular systolic function in patients with PVCs. METHODS Compare the clinical data, two-dimensional echocardiography parameters, and myocardial work parameters of 66 patients with PVCs and 35 healthy volunteers and explore the relevant risk factors for postoperative recurrence in patients with PVCs. RESULTS In patients with PVCs compared to the control group, they exhibit enlargement of left atrial diameter (LAD) and left ventricular internal dimension in diastole (LVIDd), as well as thickening of the left ventricular wall. The global work waste (GWW) increases, while the global work efficiency (GWE) decreases. There is a significant negative correlation between the PVC burden and GWE (r = -0.70, p <0.01), and a significant positive correlation between the PVC burden and GWW (r = 0.58, p <0.01). GWE is a sensitive indicator for predicting the recurrence of PVCs after radiofrequency ablation. Patients with GWE <91.5%, global longitudinal strain (GLS) <15.5%, and ejection fraction (EF) <62.5% have a higher postoperative recurrence rate. CONCLUSION PVCs can cause impairment of left ventricular systolic function. GWE is the most sensitive indicator for predicting postoperative recurrence in patients with PVCs. Patients with GWE <91.5%, GLS <15.5%, and EF <62.5% have a higher postoperative recurrence rate.
Collapse
Affiliation(s)
- Chunrui Zhou
- Department of Ultrasound, Yanan Hospital of Kunming City, The Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Qian He
- Department of Ultrasound, Yanan Hospital of Kunming City, The Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yunchuan Ding
- Department of Ultrasound, Yanan Hospital of Kunming City, The Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Clinical Research Center of Cardiovascular Ultrasound, Yunnan, China
- Yunnan Province Key Laboratory of Cardiovascular Diseases, Kunming, Yunnan, China
| | - Qinghui Wang
- Department of Ultrasound, Yanan Hospital of Kunming City, The Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Clinical Research Center of Cardiovascular Ultrasound, Yunnan, China
- Yunnan Province Key Laboratory of Cardiovascular Diseases, Kunming, Yunnan, China
| | - Lini Xian
- Department of Ultrasound, Yanan Hospital of Kunming City, The Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Xin Peng
- Department of Ultrasound, Yanan Hospital of Kunming City, The Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Fuyong Mao
- Department of Ultrasound, Yanan Hospital of Kunming City, The Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Qingqing Luo
- Department of Ultrasound, Yanan Hospital of Kunming City, The Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Zefan Yang
- Department of Ultrasound, Yanan Hospital of Kunming City, The Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Ping Yang
- Department of Ultrasound, Yanan Hospital of Kunming City, The Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Jian Chen
- Department of Ultrasound, Yanan Hospital of Kunming City, The Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Clinical Research Center of Cardiovascular Ultrasound, Yunnan, China
- Yunnan Province Key Laboratory of Cardiovascular Diseases, Kunming, Yunnan, China
| |
Collapse
|
2
|
Kader N, Holm-Nielsen LT, Tayal B, Riahi S, Sommer A, Nielsen JC, Kronborg MB, Stephansen C, Andersen NH, Risum N, Søgaard P, Zaremba T. Contractile asymmetry and survival in patients with left bundle branch abnormality treated with cardiac resynchronization therapy. EUROPEAN HEART JOURNAL. IMAGING METHODS AND PRACTICE 2023; 1:qyad045. [PMID: 39045065 PMCID: PMC11195769 DOI: 10.1093/ehjimp/qyad045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/13/2023] [Indexed: 07/25/2024]
Abstract
Aims Currently, electrical rather than mechanical parameters of delayed left ventricular (LV) activation are used for patient selection for cardiac resynchronization therapy (CRT). However, despite adhering to current guideline-based criteria, about one-third of heart failure (HF) patients fail to derive benefit from CRT. This study sought to investigate the prognostic survival significance of a recently introduced index of contractile asymmetry (ICA) based on the deformation of entire opposing LV walls in the context of selecting patients with HF and left bundle branch abnormality (LBBB) for CRT. Methods and results We analysed 367 patients with HF and LBBB undergoing CRT (31.6% females, 69 ± 9 years, ischaemic aetiology in 50.7%, LV ejection fraction 27 ± 6%). ICA was calculated using LV strain rate values from curved anatomical M-mode plots of apical 2D echocardiography images. The predictive value of ICA was assessed using Kaplan-Meier analysis and Cox proportional hazards models. During a median follow-up time of 5.54 years, death or cardiac transplantation occurred in 105 (28.6%) cases. Higher baseline ICA values in all apical views, particularly in the two-chamber view (ICA-2ch), were associated with increased event-free survival, and the unadjusted hazard ratio was 0.28 (95% confidence interval 0.18-0.46). Higher ICA-2ch (>0.319 s-1) consistently predicted survival across clinical subgroups and remained significant after covariate adjustment, while the event rate sharply increased in low ICA-2ch cases. Additionally, including ICA-2ch improved the predictive value of the multivariate risk model containing the typical LBBB pattern. Conclusion Pre-implant ICA suggests a quantitative prognostic threshold for both long-term survival and adverse outcomes following CRT implantation.
Collapse
Affiliation(s)
- Nareen Kader
- Department of Cardiology, Aalborg University Hospital, Hobrovej 18-22, 9100 Aalborg, Denmark
| | | | - Bhupendar Tayal
- Department of Cardiology, Aalborg University Hospital, Hobrovej 18-22, 9100 Aalborg, Denmark
| | - Sam Riahi
- Department of Cardiology, Aalborg University Hospital, Hobrovej 18-22, 9100 Aalborg, Denmark
| | - Anders Sommer
- Department of Cardiology, Aalborg University Hospital, Hobrovej 18-22, 9100 Aalborg, Denmark
| | - Jens Cosedis Nielsen
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | | | - Niels Holmark Andersen
- Department of Cardiology, Aalborg University Hospital, Hobrovej 18-22, 9100 Aalborg, Denmark
| | - Niels Risum
- Department of Cardiology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Peter Søgaard
- Department of Cardiology, Aalborg University Hospital, Hobrovej 18-22, 9100 Aalborg, Denmark
| | - Tomas Zaremba
- Department of Cardiology, Aalborg University Hospital, Hobrovej 18-22, 9100 Aalborg, Denmark
| |
Collapse
|
3
|
Hopman LHGA, Zweerink A, van der Lingen ALCJ, Huntelaar MJ, Mulder MJ, Robbers LFHJ, van Rossum AC, van Halm VP, Götte MJW, Allaart CP. Feasibility of CMR Imaging during Biventricular Pacing: Comparison with Invasive Measurement as a Pathway towards a Novel Optimization Strategy. J Clin Med 2023; 12:3998. [PMID: 37373691 PMCID: PMC10298880 DOI: 10.3390/jcm12123998] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/07/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
OBJECTIVES This prospective pilot study assessed the feasibility of cardiovascular magnetic resonance (CMR) imaging during biventricular (BIV) pacing in patients with a CMR conditional cardiac resynchronization therapy defibrillator (CRT-D) and compared the results with invasive volume measurements. METHODS Ten CRT-D patients underwent CMR imaging prior to device implantation (baseline) and six weeks after device implantation, including CRT-on and CRT-off modes. Left ventricular (LV) function, volumes, and strain measurements of LV dyssynchrony and dyscoordination were assessed. Invasive pressure-volume measurements were performed, matching the CRT settings used during CMR. RESULTS Post-implantation imaging enabled reliable cine assessment, but showed artefacts on late gadolinium enhancement images. After six weeks of CRT, significant reverse remodeling was observed, with a 22.7 ± 11% reduction in LV end-systolic volume during intrinsic rhythm (CRT-off). During CRT-on, the LV ejection fraction significantly improved from 27.4 ± 5.9% to 32.2 ± 8.7% (p < 0.01), and the strain assessment showed the abolition of the left bundle branch block contraction pattern. Invasively measured and CMR-assessed LV hemodynamics during BIV pacing were significantly associated. CONCLUSIONS Post-CRT implantation CMR assessing acute LV pump function is feasible and provides important insights into the effects of BIV pacing on cardiac function and contraction patterns. LV assessment during CMR may constitute a future CRT optimization strategy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Cornelis P. Allaart
- Department of Cardiology, Amsterdam UMC, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands; (L.H.G.A.H.)
| |
Collapse
|
4
|
Bazoukis G, Hui JMH, Lee YHA, Chou OHI, Sfairopoulos D, Vlachos K, Saplaouras A, Letsas KP, Efremidis M, Tse G, Vassiliou VS, Korantzopoulos P. The role of cardiac magnetic resonance in identifying appropriate candidates for cardiac resynchronization therapy - a systematic review of the literature. Heart Fail Rev 2022; 27:2095-2118. [PMID: 36045189 DOI: 10.1007/s10741-022-10263-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/23/2022] [Indexed: 11/04/2022]
Abstract
Despite the strict indications for cardiac resynchronization therapy (CRT) implantation, a significant proportion of patients will fail to adequately respond to the treatment. This systematic review aims to present the existing evidence about the role of cardiac magnetic resonance (CMR) in identifying patients who are likely to respond better to the CRT. A systematic search in the MedLine database and Cochrane Library from their inception to August 2021 was performed, without any limitations, by two independent investigators. We considered eligible observational studies or randomized clinical trials (RCTs) that enrolled patients > 18 years old with heart failure (HF) of ischaemic or non-ischaemic aetiology and provided data about the association of baseline CMR variables with clinical or echocardiographic response to CRT for at least 3 months. This systematic review was performed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA Statement). Following our search strategy, 47 studies were finally included in our review. CMR appears to have an additive role in identifying the subgroup of patients who will respond better to CRT. Specifically, the presence and the extent of myocardial scar were associated with increased non-response rates, while those with no scar respond better. Furthermore, existing data show that scar location can be associated with CRT response rates. CMR-derived markers of mechanical desynchrony can also be used as predictors of CRT response. CMR data can be used to optimize the position of the left ventricular lead during the CRT implantation procedure. Specifically, positioning the left ventricular lead in a branch of the coronary sinus that feeds an area with transmural scar was associated with poorer response to CRT. CMR can be used as a non-invasive optimization tool to identify patients who are more likely to achieve better clinical and echocardiographic response following CRT implantation.
Collapse
Affiliation(s)
- George Bazoukis
- Department of Cardiology, Larnaca General Hospital, Inomenon Polition Amerikis, Larnaca, Cyprus.
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, 2414, Nicosia, Cyprus.
| | - Jeremy Man Ho Hui
- International Health Informatics Study Network, Cardiovascular Analytics Group, China-UK Collaboration, Hong Kong, China
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yan Hiu Athena Lee
- International Health Informatics Study Network, Cardiovascular Analytics Group, China-UK Collaboration, Hong Kong, China
- Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Oscar Hou In Chou
- International Health Informatics Study Network, Cardiovascular Analytics Group, China-UK Collaboration, Hong Kong, China
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | | | | | | | | | - Michael Efremidis
- Electrophysiology Laboratory, Onassis Cardiac Surgery Center, Athens, Greece
| | - Gary Tse
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
- Kent and Medway Medical School, Kent, UK
| | - Vassilios S Vassiliou
- Norwich Medical School, University of East Anglia and Norfolk and Norwich University Hospital, Norwich, NR4 7TJ, UK
| | | |
Collapse
|
5
|
Fixsen LS, Wouters PC, Lopata RGP, Kemps HMC. Strain-based discoordination imaging during exercise in heart failure with reduced ejection fraction: Feasibility and reproducibility. BMC Cardiovasc Disord 2022; 22:127. [PMID: 35337295 PMCID: PMC8957182 DOI: 10.1186/s12872-022-02578-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 03/15/2022] [Indexed: 11/10/2022] Open
Abstract
PURPOSE Various parameters of mechanical dyssynchrony have been proposed to improve patient selection criteria for cardiac resynchronization therapy, but sensitivity and specificity are lacking. However, echocardiographic parameters are consistently investigated at rest, whereas heart failure (HF) symptoms predominately manifest during submaximal exertion. Although strain-based predictors of response are promising, feasibility and reproducibility during exercise has yet to be demonstrated. METHODS Speckle-tracking echocardiography was performed in patients with HF at two separate visits. Echocardiography was performed at rest, during various exercise intensity levels, and during recovery from exercise. Systolic rebound stretch of the septum (SRSsept), systolic shortening, and septal discoordination index (SDI) were calculated. RESULTS Echocardiography was feasible in about 70-80% of all examinations performed during exercise. Of these acquired views, 84% of the cine-loops were suitable for analysis of strain-based mechanical dyssynchrony. Test-retest variability and intra- and inter-operator reproducibility at 30% and 60% of the ventilatory threshold (VT) were about 2.5%. SDI improved in the majority of patients at 30% and 60% of the VT, with moderate to good agreement between both intensity levels. CONCLUSION Although various challenges remain, exercise echocardiography with strain analysis appears to be feasible in the majority of patients with dyssynchronous heart failure. Inter- and intra-observer agreement of SRSsept and SDI up to 60% of the VT were comparable to resting values. During exercise, the extent of SDI was variable, suggesting a heterogeneous response to exercise. Further research is warranted to establish its clinical significance.
Collapse
Affiliation(s)
- Louis S Fixsen
- Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands.
| | - Philippe C Wouters
- Department of Cardiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Richard G P Lopata
- Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Hareld M C Kemps
- Department of Cardiology, Maxima Medical Centre, Veldhoven, The Netherlands.,Department of Industrial Design, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
6
|
Rodero C, Strocchi M, Lee AWC, Rinaldi CA, Vigmond EJ, Plank G, Lamata P, Niederer SA. Impact of anatomical reverse remodelling in the design of optimal quadripolar pacing leads: A computational study. Comput Biol Med 2022; 140:105073. [PMID: 34852973 PMCID: PMC8752960 DOI: 10.1016/j.compbiomed.2021.105073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 11/28/2022]
Abstract
Lead position is an important factor in determining response to Cardiac Resynchronization Therapy (CRT) in dyssynchronous heart failure (HF) patients. Multipoint pacing (MPP) enables pacing from multiple electrodes within the same lead, improving the potential outcome for patients. Virtual quadripolar lead designs were evaluated by simulating pacing from all combinations of 1 and 2 electrodes along the lead in each virtual patient from cohorts of HF (n = 24) and simulated reverse remodelled (RR, n = 20) patients. Electrical synchrony was assessed by the time 90% of the ventricular myocardium is activated (AT090). Optimal 1 and 2 electrode pacing configurations for AT090 were combined to identify the 4-electrode lead design that maximised benefits across all patients. LV pacing in the HF cohort in all possible single and double electrode locations reduced AT090 by 14.48 ± 5.01 ms (11.92 ± 3.51%). The major determinant of reduction in activation time was patient anatomy. Pacing with a single optimal lead design reduced AT090 more in the HF cohort than the RR cohort (12.68 ± 3.29% vs 10.81 ± 2.34%). Pacing with a single combined HF and RR population-optimised lead design achieves electrical resynchronization with near equivalence to personalised lead designs both in HF and RR anatomies. These findings suggest that although lead configurations have to be tailored to each patient, a single optimal lead design is sufficient to obtain near-optimal results across most patients. This study shows the potential of virtual clinical trials as tools to compare existing and explore new lead designs.
Collapse
Affiliation(s)
- Cristobal Rodero
- Cardiac Electro-Mechanics Research Group, Biomedical Engineering Department, King ́s College London, London, United Kingdom.
| | - Marina Strocchi
- Cardiac Electro-Mechanics Research Group, Biomedical Engineering Department, King ́s College London, London, United Kingdom
| | - Angela W C Lee
- Cardiac Electro-Mechanics Research Group, Biomedical Engineering Department, King ́s College London, London, United Kingdom
| | - Christopher A Rinaldi
- King's College London, Interdisciplinary Medical Imaging Group, London, United Kingdom
| | - Edward J Vigmond
- Institute of Electrophysiology and Heart Modeling, Foundation Bordeaux University, Bordeaux, France; Bordeaux Institute of Mathematics, UMR-5251, University of Bordeaux, Bordeaux, France
| | - Gernot Plank
- Medical University of Graz, Gottfried Schatz Research Center - Biophysics, Graz, Austria
| | - Pablo Lamata
- Cardiac Electro-Mechanics Research Group, Biomedical Engineering Department, King ́s College London, London, United Kingdom
| | - Steven A Niederer
- Cardiac Electro-Mechanics Research Group, Biomedical Engineering Department, King ́s College London, London, United Kingdom
| |
Collapse
|
7
|
Zweerink A, Friedman DJ, Klem I, van de Ven PM, Vink C, Biesbroek PS, Hansen SM, Kim RJ, van Rossum AC, Atwater BD, Allaart CP, Nijveldt R. Segment Length in Cine Strain Analysis Predicts Cardiac Resynchronization Therapy Outcome Beyond Current Guidelines. Circ Cardiovasc Imaging 2021; 14:e012350. [PMID: 34287001 DOI: 10.1161/circimaging.120.012350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Patients with a class I recommendation for cardiac resynchronization therapy (CRT) are likely to benefit, but the effect of CRT in class II patients is more heterogeneous and additional selection parameters are needed in this group. The recently validated segment length in cine strain analysis of the septum (SLICE-ESSsep) measurement on cardiac magnetic resonance cine imaging predicts left ventricular functional recovery after CRT but its prognostic value is unknown. This study sought to evaluate the prognostic value of SLICE-ESSsep for clinical outcome after CRT. METHODS Two hundred eighteen patients with a left bundle branch block or intraventricular conduction delay and a class I or class II indication for CRT who underwent preimplantation cardiovascular magnetic resonance examination were enrolled. SLICE-ESSsep was manually measured on standard cardiovascular magnetic resonance cine imaging. The primary combined end point was all-cause mortality, left ventricular assist device, or heart transplantation. Secondary end points were (1) appropriate implantable cardioverter defibrillator therapy and (2) heart failure hospitalization. RESULTS Two-thirds (65%) of patients had a positive SLICE-ESSsep ≥0.9% (ie, systolic septal stretching). During a median follow-up of 3.8 years, 66 (30%) patients reached the primary end point. Patients with positive SLICE-ESSsep were at lower risk to reach the primary end point (hazard ratio 0.36; P<0.001) and heart failure hospitalization (hazard ratio 0.41; P=0.019), but not for implantable cardioverter defibrillator therapy (hazard ratio, 0.66; P=0.272). Clinical outcome of class II patients with a positive ESSsep was similar to those of class I patients (hazard ratio, 1.38 [95% CI, 0.66-2.88]; P=0.396). CONCLUSIONS Strain assessment of the septum (SLICE-ESSsep) provides a prognostic measure for clinical outcome after CRT. Detection of a positive SLICE-ESSsep in patients with a class II indication predicts improved CRT outcome similar to those with a class I indication whereas SLICE-ESSsep negative patients have poor prognosis after CRT implantation.
Collapse
Affiliation(s)
- Alwin Zweerink
- Department of Cardiology, and Amsterdam Cardiovascular Sciences (ACS) (A.Z., C.V., P.S.B., A.C.v.R., C.P.A., R.N.), Amsterdam University Medical Center, location VU Medical Center, Amsterdam, The Netherlands
| | - Daniel J Friedman
- Section of Cardiac Electrophysiology, Yale School of Medicine, New Haven, CT (D.J.F., R.J.K.)
| | - Igor Klem
- Division of Cardiology, Duke University Medical Center, Durham, NC (I.K.)
| | - Peter M van de Ven
- Department of Epidemiology and Biostatistics (P.M.v.d.V.), Amsterdam University Medical Center, location VU Medical Center, Amsterdam, The Netherlands
| | - Caitlin Vink
- Department of Cardiology, and Amsterdam Cardiovascular Sciences (ACS) (A.Z., C.V., P.S.B., A.C.v.R., C.P.A., R.N.), Amsterdam University Medical Center, location VU Medical Center, Amsterdam, The Netherlands
| | - P Stefan Biesbroek
- Department of Cardiology, and Amsterdam Cardiovascular Sciences (ACS) (A.Z., C.V., P.S.B., A.C.v.R., C.P.A., R.N.), Amsterdam University Medical Center, location VU Medical Center, Amsterdam, The Netherlands
| | - Steen M Hansen
- Unit of Epidemiology and Biostatistics, Aalborg University Hospital, Denmark (S.M.H.)
| | - Raymond J Kim
- Section of Cardiac Electrophysiology, Yale School of Medicine, New Haven, CT (D.J.F., R.J.K.)
| | - Albert C van Rossum
- Department of Cardiology, and Amsterdam Cardiovascular Sciences (ACS) (A.Z., C.V., P.S.B., A.C.v.R., C.P.A., R.N.), Amsterdam University Medical Center, location VU Medical Center, Amsterdam, The Netherlands
| | | | - Cornelis P Allaart
- Department of Cardiology, and Amsterdam Cardiovascular Sciences (ACS) (A.Z., C.V., P.S.B., A.C.v.R., C.P.A., R.N.), Amsterdam University Medical Center, location VU Medical Center, Amsterdam, The Netherlands
| | - Robin Nijveldt
- Department of Cardiology, and Amsterdam Cardiovascular Sciences (ACS) (A.Z., C.V., P.S.B., A.C.v.R., C.P.A., R.N.), Amsterdam University Medical Center, location VU Medical Center, Amsterdam, The Netherlands.,Department of Cardiology, Radboud University Medical Center, Nijmegen, The Netherlands (R.N.)
| |
Collapse
|
8
|
Larsen CK, Aalen JM, Stokke C, Fjeld JG, Kongsgaard E, Duchenne J, Degtiarova G, Gheysens O, Voigt JU, Smiseth OA, Hopp E. Regional myocardial work by cardiac magnetic resonance and non-invasive left ventricular pressure: a feasibility study in left bundle branch block. Eur Heart J Cardiovasc Imaging 2021; 21:143-153. [PMID: 31599327 DOI: 10.1093/ehjci/jez231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/08/2019] [Accepted: 09/16/2019] [Indexed: 11/13/2022] Open
Abstract
AIMS Regional myocardial work may be assessed by pressure-strain analysis using a non-invasive estimate of left ventricular pressure (LVP). Strain by speckle tracking echocardiography (STE) is not always accessible due to poor image quality. This study investigated the estimation of regional myocardial work from strain by feature tracking (FT) cardiac magnetic resonance (CMR) and non-invasive LVP. METHODS AND RESULTS Thirty-seven heart failure patients with reduced ejection fraction, left bundle branch block (LBBB), and no myocardial scar were compared to nine controls without LBBB. Circumferential strain was measured by FT-CMR in a mid-ventricular short-axis cine view, and longitudinal strain by STE. Segmental work was calculated by pressure-strain analysis. Twenty-five patients underwent 18F-fluorodeoxyglucose (FDG) positron emission tomography. Segmental values were reported as percentages of the segment with maximum myocardial FDG uptake. In LBBB patients, net CMR-derived work was 51 ± 537 (mean ± standard deviation) in septum vs. 1978 ± 1084 mmHg·% in the left ventricular (LV) lateral wall (P < 0.001). In controls, however, there was homogeneous work distribution with similar values in septum and the LV lateral wall (non-significant). Reproducibility was good. Segmental CMR-derived work correlated with segmental STE-derived work and with segmental FDG uptake (average r = 0.71 and 0.80, respectively). CONCLUSION FT-CMR in combination with non-invasive LVP demonstrated markedly reduced work in septum compared to the LV lateral wall in patients with LBBB. Work distribution correlated with STE-derived work and energy demand as reflected in FDG uptake. These results suggest that FT-CMR in combination with non-invasive LVP is a relevant clinical tool to measure regional myocardial work.
Collapse
Affiliation(s)
- Camilla Kjellstad Larsen
- Institute for Surgical Research, Oslo University Hospital, Oslo, Norway.,Center for Cardiological Innovation, Oslo University Hospital, Oslo, Norway.,Department of Cardiology, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - John M Aalen
- Institute for Surgical Research, Oslo University Hospital, Oslo, Norway.,Center for Cardiological Innovation, Oslo University Hospital, Oslo, Norway.,Department of Cardiology, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Caroline Stokke
- Department of Diagnostic Physics, Oslo University Hospital, Oslo, Norway.,Division of Radiology and Nuclear Medicine, Oslo University Hospital, Rikshospitalet, N-0027 Oslo, Norway.,Oslo Metropolitan University, Oslo, Norway
| | - Jan Gunnar Fjeld
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, Rikshospitalet, N-0027 Oslo, Norway.,Oslo Metropolitan University, Oslo, Norway
| | - Erik Kongsgaard
- Center for Cardiological Innovation, Oslo University Hospital, Oslo, Norway.,Department of Cardiology, Oslo University Hospital, Oslo, Norway
| | - Jürgen Duchenne
- Department of Cardiovascular Diseases, University Hospitals Leuven, Leuven, Belgium.,Department of Cardiovascular Sciences, KU Leuven - University of Leuven, Leuven, Belgium
| | - Ganna Degtiarova
- Department of Nuclear Medicine, University Hospitals Leuven, Leuven, Belgium.,Department of Imaging and Pathology, KU Leuven - University of Leuven, Leuven, Belgium
| | - Olivier Gheysens
- Department of Nuclear Medicine, University Hospitals Leuven, Leuven, Belgium.,Department of Imaging and Pathology, KU Leuven - University of Leuven, Leuven, Belgium
| | - Jens-Uwe Voigt
- Department of Cardiovascular Diseases, University Hospitals Leuven, Leuven, Belgium.,Department of Cardiovascular Sciences, KU Leuven - University of Leuven, Leuven, Belgium
| | - Otto A Smiseth
- Institute for Surgical Research, Oslo University Hospital, Oslo, Norway.,Center for Cardiological Innovation, Oslo University Hospital, Oslo, Norway.,Department of Cardiology, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Einar Hopp
- Center for Cardiological Innovation, Oslo University Hospital, Oslo, Norway.,Division of Radiology and Nuclear Medicine, Oslo University Hospital, Rikshospitalet, N-0027 Oslo, Norway
| |
Collapse
|
9
|
Wouters PC, Leenders GE, Cramer MJ, Meine M, Prinzen FW, Doevendans PA, De Boeck BWL. Acute recoordination rather than functional hemodynamic improvement determines reverse remodelling by cardiac resynchronisation therapy. Int J Cardiovasc Imaging 2021; 37:1903-1911. [PMID: 33547623 PMCID: PMC8255256 DOI: 10.1007/s10554-021-02174-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/22/2021] [Indexed: 12/21/2022]
Abstract
PURPOSE Cardiac resynchronisation therapy (CRT) improves left ventricular (LV) function acutely, with further improvements and reverse remodelling during chronic CRT. The current study investigated the relation between acute improvement of LV systolic function, acute mechanical recoordination, and long-term reverse remodelling after CRT. METHODS In 35 patients, LV speckle tracking longitudinal strain, LV volumes & ejection fraction (LVEF) were assessed by echocardiography before, acutely within three days, and 6 months after CRT. A subgroup of 25 patients underwent invasive assessment of the maximal rate of LV pressure rise (dP/dtmax,) during CRT-implantation. The acute change in dP/dtmax, LVEF, systolic discoordination (internal stretch fraction [ISF] and LV systolic rebound stretch [SRSlv]) and systolic dyssynchrony (standard deviation of peak strain times [2DS-SD18]) was studied, and their association with long-term reverse remodelling were determined. RESULTS CRT induced acute and ongoing recoordination (ISF from 45 ± 18 to 27 ± 11 and 23 ± 12%, p < 0.001; SRS from 2.27 ± 1.33 to 0.74 ± 0.50 and 0.71 ± 0.43%, p < 0.001) and improved LV function (dP/dtmax 668 ± 185 vs. 817 ± 198 mmHg/s, p < 0.001; stroke volume 46 ± 15 vs. 54 ± 20 and 52 ± 16 ml; LVEF 19 ± 7 vs. 23 ± 8 and 27 ± 10%, p < 0.001). Acute recoordination related to reverse remodelling (r = 0.601 and r = 0.765 for ISF & SRSlv, respectively, p < 0.001). Acute functional improvements of LV systolic function however, neither related to reverse remodelling nor to the extent of acute recoordination. CONCLUSION Long-term reverse remodelling after CRT is likely determined by (acute) recoordination rather than by acute hemodynamic improvements. Discoordination may therefore be a more important CRT-substrate that can be assessed and, acutely restored.
Collapse
Affiliation(s)
- Philippe C Wouters
- University Medical Center Utrecht, Heidelberglaan 100, 3584, CX, Utrecht, The Netherlands.
| | - Geert E Leenders
- University Medical Center Utrecht, Heidelberglaan 100, 3584, CX, Utrecht, The Netherlands
| | - Maarten J Cramer
- University Medical Center Utrecht, Heidelberglaan 100, 3584, CX, Utrecht, The Netherlands
| | - Mathias Meine
- University Medical Center Utrecht, Heidelberglaan 100, 3584, CX, Utrecht, The Netherlands
| | - Frits W Prinzen
- Maastricht University, P.O. Box 616, 6200, MD, Maastricht, The Netherlands
| | | | - Bart W L De Boeck
- University Medical Center Utrecht, Heidelberglaan 100, 3584, CX, Utrecht, The Netherlands.,Luzerner Kantonsspital, 6000, Luzern, Switzerland
| |
Collapse
|
10
|
Zweerink A, Nijveldt R, Braams NJ, Maass AH, Vernooy K, de Lange FJ, Meine M, Geelhoed B, Rienstra M, van Gelder IC, Vos MA, van Rossum AC, Allaart CP. Segment length in cine (SLICE) strain analysis: a practical approach to estimate potential benefit from cardiac resynchronization therapy. J Cardiovasc Magn Reson 2021; 23:4. [PMID: 33423681 PMCID: PMC7798189 DOI: 10.1186/s12968-020-00701-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 08/24/2020] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Segment length in cine (SLICE) strain analysis on standard cardiovascular magnetic resonance (CMR) cine images was recently validated against gold standard myocardial tagging. The present study aims to explore predictive value of SLICE for cardiac resynchronization therapy (CRT) response. METHODS AND RESULTS Fifty-seven patients with heart failure and left bundle branch block (LBBB) were prospectively enrolled in this multi-center study and underwent CMR examination before CRT implantation. Circumferential strains of the septal and lateral wall were measured by SLICE on short-axis cine images. In addition, timing and strain pattern parameters were assessed. After twelve months, CRT response was quantified by the echocardiographic change in left ventricular (LV) end-systolic volume (LVESV). In contrast to timing parameters, strain pattern parameters being systolic rebound stretch of the septum (SRSsep), systolic stretch index (SSIsep-lat), and internal stretch factor (ISFsep-lat) all correlated significantly with LVESV change (R - 0.56; R - 0.53; and R - 0.58, respectively). Of all strain parameters, end-systolic septal strain (ESSsep) showed strongest correlation with LVESV change (R - 0.63). Multivariable analysis showed ESSsep to be independently related to LVESV change together with age and QRSAREA. CONCLUSION The practicable SLICE strain technique may help the clinician to estimate potential benefit from CRT by analyzing standard CMR cine images without the need for commercial software. Of all strain parameters, end-systolic septal strain (ESSsep) demonstrates the strongest correlation with reverse remodeling after CRT. This parameter may be of special interest in patients with non-strict LBBB morphology for whom CRT benefit is doubted.
Collapse
Affiliation(s)
- Alwin Zweerink
- Department of Cardiology, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centers (AUMC), Location VU University Medical Center, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
| | - Robin Nijveldt
- Department of Cardiology, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centers (AUMC), Location VU University Medical Center, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
- Department of Cardiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Natalia J. Braams
- Department of Cardiology, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centers (AUMC), Location VU University Medical Center, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
| | - Alexander H. Maass
- Department of Cardiology, Thoraxcentre, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Kevin Vernooy
- Department of Cardiology, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Cardiology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Frederik J. de Lange
- Department of Cardiology, Amsterdam University Medical Centers (AUMC), Location Academic Medical Center, Amsterdam, The Netherlands
| | - Mathias Meine
- Department of Cardiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Bastiaan Geelhoed
- Department of Cardiology, Thoraxcentre, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Michiel Rienstra
- Department of Cardiology, Thoraxcentre, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Isabelle C. van Gelder
- Department of Cardiology, Thoraxcentre, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Marc A. Vos
- Department of Medical Physiology, University of Utrecht, Utrecht, The Netherlands
| | - Albert C. van Rossum
- Department of Cardiology, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centers (AUMC), Location VU University Medical Center, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
| | - Cornelis P. Allaart
- Department of Cardiology, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centers (AUMC), Location VU University Medical Center, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
11
|
Martínez-Legazpi P, Pérez del Villar C, Bermejo J. Regional myocardial mechanics: there’s more than meets the strain. Eur Heart J Cardiovasc Imaging 2020; 21:629-631. [DOI: 10.1093/ehjci/jeaa055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Pablo Martínez-Legazpi
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Dr. Esquerdo, 46, 28007 Madrid, Spain
- Facultad de Medicina, Universidad Complutense de Madrid, Plaza de Ramón y Cajal, s/n, 28040 Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Dr. Esquerdo 46, 28007 Madrid, Spain
- CIBERCV, Instituto de Salud Carlos III. C/ Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Candelas Pérez del Villar
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Dr. Esquerdo, 46, 28007 Madrid, Spain
- Facultad de Medicina, Universidad Complutense de Madrid, Plaza de Ramón y Cajal, s/n, 28040 Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Dr. Esquerdo 46, 28007 Madrid, Spain
- CIBERCV, Instituto de Salud Carlos III. C/ Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Javier Bermejo
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Dr. Esquerdo, 46, 28007 Madrid, Spain
- Facultad de Medicina, Universidad Complutense de Madrid, Plaza de Ramón y Cajal, s/n, 28040 Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Dr. Esquerdo 46, 28007 Madrid, Spain
- CIBERCV, Instituto de Salud Carlos III. C/ Monforte de Lemos 3-5, 28029 Madrid, Spain
| |
Collapse
|
12
|
Duchenne J, Aalen JM, Cvijic M, Larsen CK, Galli E, Bézy S, Beela AS, Ünlü S, Pagourelias ED, Winter S, Hopp E, Kongsgård E, Donal E, Fehske W, Smiseth OA, Voigt JU. Acute redistribution of regional left ventricular work by cardiac resynchronization therapy determines long-term remodelling. Eur Heart J Cardiovasc Imaging 2020; 21:619-628. [DOI: 10.1093/ehjci/jeaa003] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/29/2019] [Accepted: 01/08/2020] [Indexed: 12/13/2022] Open
Abstract
Abstract
Aims
Investigating the acute impact of cardiac resynchronization therapy (CRT) on regional myocardial work distribution in the left ventricle (LV) and to which extent it is related to long-term reverse remodelling.
Methods and results
One hundred and thirty heart failure patients, referred for CRT implantation, were recruited in our prospective multicentre study. Regional myocardial work was calculated from non-invasive segmental stress–strain loop area before and immediately after CRT. The magnitude of volumetric reverse remodelling was determined from the change in LV end-systolic volume, 11 ± 2 months after implantation. CRT caused acute redistribution of myocardial work across the LV, with an increase in septal work, and decrease in LV lateral wall work (all P < 0.05). Amongst all LV walls, the acute change in work in the septum and lateral wall of the four-chamber view correlated best and significantly with volumetric reverse remodelling (r = 0.62, P < 0.0001), with largest change seen in patients with most volumetric reverse remodelling. In multivariate linear regression analysis, including conventional parameters, such as pre-implant QRS morphology and duration, LV ejection fraction, ischaemic origin of cardiomyopathy, and the redistribution of work across the septal and lateral walls, the latter appeared as the strongest determinant of volumetric reverse remodelling after CRT (model R2 = 0.414, P < 0.0001).
Conclusion
The acute redistribution of regional myocardial work between the septal and lateral wall of the LV is an important determinant of reverse remodelling after CRT implantation. Our data suggest that the treatment of the loading imbalance should, therefore, be the main aim of CRT.
Collapse
Affiliation(s)
- Jürgen Duchenne
- Department of Cardiovascular Sciences, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
- Department of Cardiovascular Diseases, University Hospitals Leuven, Leuven, Belgium
| | - John M Aalen
- Institute for Surgical Research, Oslo University Hospital, University of Oslo, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Cardiology, Oslo University Hospital, Oslo, Norway
| | - Marta Cvijic
- Department of Cardiovascular Sciences, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
- Department of Cardiovascular Diseases, University Hospitals Leuven, Leuven, Belgium
- Department of Cardiology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Camilla K Larsen
- Institute for Surgical Research, Oslo University Hospital, University of Oslo, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Cardiology, Oslo University Hospital, Oslo, Norway
| | - Elena Galli
- LTSI, Inserm 1099, University of Rennes, Rennes, France
- Department of Cardiology, CHU Rennes, France
| | - Stéphanie Bézy
- Department of Cardiovascular Sciences, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
- Department of Cardiovascular Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Ahmed S Beela
- Department of Cardiovascular Sciences, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
- Department of Cardiovascular Diseases, University Hospitals Leuven, Leuven, Belgium
- Department of Cardiovascular Diseases, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Serkan Ünlü
- Department of Cardiovascular Sciences, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
- Department of Cardiovascular Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Efstathios D Pagourelias
- Department of Cardiovascular Sciences, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
- Department of Cardiovascular Diseases, University Hospitals Leuven, Leuven, Belgium
- Third Cardiology Department, Hippokrateion University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Stefan Winter
- Klinik für Innere Medizin und Kardiologie, St. Vinzenz Hospital, Cologne, Germany
| | - Einar Hopp
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Erik Kongsgård
- Institute for Surgical Research, Oslo University Hospital, University of Oslo, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Erwan Donal
- LTSI, Inserm 1099, University of Rennes, Rennes, France
- Department of Cardiology, CHU Rennes, France
| | - Wolfgang Fehske
- Klinik für Innere Medizin und Kardiologie, St. Vinzenz Hospital, Cologne, Germany
| | - Otto A Smiseth
- Institute for Surgical Research, Oslo University Hospital, University of Oslo, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Cardiology, Oslo University Hospital, Oslo, Norway
| | - Jens-Uwe Voigt
- Department of Cardiovascular Sciences, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
- Department of Cardiovascular Diseases, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
13
|
Zweerink A, Hopman LHGA, Allaart CP. Efficiency is key. Eur Heart J Cardiovasc Imaging 2020; 21:154-156. [PMID: 31630186 PMCID: PMC7029764 DOI: 10.1093/ehjci/jez260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Alwin Zweerink
- Department of Cardiology, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centers (AUMC), VU University Medical Center, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
| | - Luuk H G A Hopman
- Department of Cardiology, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centers (AUMC), VU University Medical Center, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
| | - Cornelis P Allaart
- Department of Cardiology, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centers (AUMC), VU University Medical Center, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
14
|
Index of contractile asymmetry improves patient selection for CRT: a proof-of-concept study. Cardiovasc Ultrasound 2019; 17:19. [PMID: 31601248 PMCID: PMC6788085 DOI: 10.1186/s12947-019-0170-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 09/06/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Nearly one-third of heart failure (HF) patients do not respond to cardiac resynchronization therapy (CRT) despite having left bundle branch block (LBBB). The aim of the study was to investigate a novel method of quantifying left ventricular (LV) contractile asymmetry in HF. METHODS Patients with HF and LBBB undergoing CRT (n = 89, 37.1% females, 68 ± 9 years, ischemic etiology in 61%, LV ejection fraction 27.1 ± 7.1%) were analyzed. LV longitudinal systolic strain rate values were extracted from curved anatomical M-mode plots of standard long-axis 2D-echocardiography images and cubic spline interpolation was used to generate a 3D-phantom. Index of contractile asymmetry (ICA) was calculated based on standard deviation of differences in strain rate of opposing walls. Average ICA was individually assessed pairwise in 12 opposing 30-degree LV sectors. Reduction in LV end-systolic volume (ESV) ≥15% after 6 months was considered as positive response to CRT. RESULTS CRT response was found in 66 (74.2%) patients. Responders with both ischemic and non-ischemic cardiomyopathy had a higher and more extensive contractile asymmetry at baseline and achieved a greater ICA reduction after CRT than non-responders. Higher baseline ICA predicted higher degree and wider extent of ICA improvement. Also, both ICA at baseline and reduction of ICA correlated with the degree of ESV reduction after CRT. CONCLUSIONS Quantification of asymmetrical LV activation in 3D by ICA provides valuable insights into LV contraction in case of LBBB and is a promising tool for improved patient selection for CRT.
Collapse
|
15
|
Schrub F, Schnell F, Donal E, Galli E. Myocardial work is a predictor of exercise tolerance in patients with dilated cardiomyopathy and left ventricular dyssynchrony. Int J Cardiovasc Imaging 2019; 36:45-53. [PMID: 31515694 DOI: 10.1007/s10554-019-01689-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 08/19/2019] [Indexed: 11/28/2022]
Abstract
The assessment of myocardial work (MW) by pressure-strain loops is a recently introduced tool for the assessment of myocardial performance. Aim of the present study is to evaluate the relationship between myocardial work and exercise tolerance in patients with dilated cardiomyopathy (DCM). 51 patients with DCM (mean age 57 ± 13 years, left ventricular ejection fraction: 32 ± 9%) underwent cardiopulmonary exercise test (CPET) to assess exercise performance. 22 patients (43%) had left or right bundle branch block with QRS duration > 120 ms. Trans-thoracic echocardiography (TTE) was performed before CPET. The following indices of myocardial work (MW) were measured regionally and globally: constructive work (CW), wasted work (WW), and work efficiency (WE). Left ventricular dyssynchrony (LV-DYS) was defined by the presence of septal flash or apical rocking at TTE. LV-DYS was observed in 16 (31%) patients and associated with lower LV ejection fraction (LVEF), lower global and septal WE, and higher global and septal WW. In patients with LV-DYS, septal WE was the only predictor of exercise capacity at multivariable analysis (β = 0.68, p = 0.03), whereas LVEF (β = 0.47, p = 0.05) and age (β = - 0.42, p = 0.04) were predictors of exercise capacity in patients without LV-DYS. In patients with DCM, LV-DYS is associated with an heterogeneous distribution of myocardial work. Septal WE is the best predictor of exercise performance in these patients.
Collapse
Affiliation(s)
- Florian Schrub
- CHU Rennes, Inserm, LTSI - UMR 1099, University of Rennes, 35000, Rennes, France
| | - Frédéric Schnell
- CHU Rennes, Inserm, LTSI - UMR 1099, University of Rennes, 35000, Rennes, France
| | - Erwan Donal
- CHU Rennes, Inserm, LTSI - UMR 1099, University of Rennes, 35000, Rennes, France
| | - Elena Galli
- CHU Rennes, Inserm, LTSI - UMR 1099, University of Rennes, 35000, Rennes, France. .,Cardiology Department, University Hospital of Rennes, Rue Henri Le Guillou, 35000, Rennes, France.
| |
Collapse
|
16
|
Zhu M, Chen H, Fulati Z, Liu Y, Su Y, Shu X. The value of left ventricular strain-volume loops in predicting response to cardiac resynchronization therapy. Cardiovasc Ultrasound 2019; 17:3. [PMID: 30777069 PMCID: PMC6379938 DOI: 10.1186/s12947-019-0153-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 02/12/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Three-dimensional (3D) speckle tracking imaging (STI) allows the simultaneous assessment of left ventricular (LV) strain and volume. We aim to explore the value of LV strain-volume loops in predicting response to cardiac resynchronization therapy (CRT). METHODS Forty heart failure (HF) patients scheduled for CRT and twenty healthy individuals were enrolled. All subjects received a 3D echocardiography and 3D STI analysis to acquire LV global and segmental principal strain (PS) and volume simultaneously. Values were plotted in a Cartesian system to construct PS-volume loop which was assessed using the two characteristics of the linear fitting curve: the slope and the coefficient of determination (R2-S/D coupling). RESULTS HF patients at baseline showed significantly lower slope and R2-S/D coupling of all PS-volume loops than healthy subjects. As for as comparing Segmental PS-Global volume loop at baseline, Midseptal R2-S/D coupling was lower and Midlateral slope was higher in CRT responders than in non-responders. For each individual, the abnormal segmental heterogeneity of Midseptal slope and R2-S/D coupling were lower than Midlateral was observed only in responders. At follow-up, significant improvements of the Midseptal slope and R2-S/D coupling were observed in responders. Midseptal R2-S/D coupling at baseline was an independent predictor of CRT response and the cut-off value of 0.55 was recommended with sensitivity of 89% and specificity of 77%. CONCLUSIONS Analysis of strain-volume loops could provide unique information for predicting response to CRT. Assessment of septal myocardial wasted work at baseline is helpful to improve patient selection for CRT.
Collapse
Affiliation(s)
- Mengruo Zhu
- Department of Echocardiography, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai Institute of Medical Imaging, 180 Fenglin Road, Shanghai, 200032, China.,Department of Cardiology, Zhongshan Hospital, Fudan University; Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai, 200032, China
| | - Haiyan Chen
- Department of Echocardiography, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai Institute of Medical Imaging, 180 Fenglin Road, Shanghai, 200032, China
| | - Zibire Fulati
- Department of Echocardiography, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai Institute of Medical Imaging, 180 Fenglin Road, Shanghai, 200032, China
| | - Yang Liu
- Department of Echocardiography, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai Institute of Medical Imaging, 180 Fenglin Road, Shanghai, 200032, China
| | - Yangang Su
- Department of Cardiology, Zhongshan Hospital, Fudan University; Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai, 200032, China
| | - Xianhong Shu
- Department of Echocardiography, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai Institute of Medical Imaging, 180 Fenglin Road, Shanghai, 200032, China. .,Department of Cardiology, Zhongshan Hospital, Fudan University; Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai, 200032, China.
| |
Collapse
|
17
|
Zweerink A, van Everdingen WM, Nijveldt R, Salden OAE, Meine M, Maass AH, Vernooy K, de Lange FJ, Vos MA, Croisille P, Clarysse P, Geelhoed B, Rienstra M, van Gelder IC, van Rossum AC, Cramer MJ, Allaart CP. Strain imaging to predict response to cardiac resynchronization therapy: a systematic comparison of strain parameters using multiple imaging techniques. ESC Heart Fail 2018; 5:1130-1140. [PMID: 30051598 PMCID: PMC6300826 DOI: 10.1002/ehf2.12335] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/15/2018] [Accepted: 06/18/2018] [Indexed: 11/17/2022] Open
Abstract
Aims Various strain parameters and multiple imaging techniques are presently available including cardiovascular magnetic resonance (CMR) tagging (CMR‐TAG), CMR feature tracking (CMR‐FT), and speckle tracking echocardiography (STE). This study aims to compare predictive performance of different strain parameters and evaluate results per imaging technique to predict cardiac resynchronization therapy (CRT) response. Methods and results Twenty‐seven patients were prospectively enrolled and underwent CMR and echocardiographic examination before CRT implantation. Strain analysis was performed in circumferential (CMR‐TAG, CMR‐FT, and STE‐circ) and longitudinal (STE‐long) orientations. Regional strain values, parameters of dyssynchrony, and discoordination were calculated. After 12 months, CRT response was measured by the echocardiographic change in left ventricular (LV) end‐systolic volume (LVESV). Twenty‐six patients completed follow‐up; mean LVESV change was −29 ± 27% with 17 (65%) patients showing ≥15% LVESV reduction. Measures of dyssynchrony (SD‐TTPLV) and discoordination (ISFLV) were strongly related to CRT response when using CMR‐TAG (R2 0.61 and R2 0.57, respectively), but showed poor correlations for CMR‐FT and STE (all R2 ≤ 0.32). In contrast, the end‐systolic septal strain (ESSsep) parameter showed a consistent high correlation with LVESV change for all techniques (CMR‐TAG R2 0.60; CMR‐FT R2 0.50; STE‐circ R2 0.43; and STE‐long R2 0.43). After adjustment for QRS duration and QRS morphology, ESSsep remained an independent predictor of response per technique. Conclusions End‐systolic septal strain was the only parameter with a consistent good relation to reverse remodelling after CRT, irrespective of assessment technique. In clinical practice, this measure can be obtained by any available strain imaging technique and provides predictive value on top of current guideline criteria.
Collapse
Affiliation(s)
- Alwin Zweerink
- Department of Cardiology, and Amsterdam Cardiovascular Sciences (ACS), VU University Medical Center, Amsterdam, The Netherlands
| | | | - Robin Nijveldt
- Department of Cardiology, and Amsterdam Cardiovascular Sciences (ACS), VU University Medical Center, Amsterdam, The Netherlands.,Department of Cardiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Odette A E Salden
- Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mathias Meine
- Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Alexander H Maass
- Department of Cardiology, Thorax Centre, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Kevin Vernooy
- Department of Cardiology, Maastricht University Medical Center, Maastricht, The Netherlands.,Department of Cardiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frederik J de Lange
- Department of Cardiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Marc A Vos
- Department of Medical Physiology, University of Utrecht, Utrecht, The Netherlands
| | - Pierre Croisille
- Univ Lyon, UJM-Saint-Etienne, INSA, CNRS UMR 5520, INSERM U1206, CREATIS, F-42023, Saint-Etienne, France
| | - Patrick Clarysse
- Univ Lyon, UJM-Saint-Etienne, INSA, CNRS UMR 5520, INSERM U1206, CREATIS, F-42023, Saint-Etienne, France
| | - Bastiaan Geelhoed
- Department of Cardiology, Thorax Centre, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Michiel Rienstra
- Department of Cardiology, Thorax Centre, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Isabelle C van Gelder
- Department of Cardiology, Thorax Centre, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Albert C van Rossum
- Department of Cardiology, and Amsterdam Cardiovascular Sciences (ACS), VU University Medical Center, Amsterdam, The Netherlands
| | - Maarten J Cramer
- Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Cornelis P Allaart
- Department of Cardiology, and Amsterdam Cardiovascular Sciences (ACS), VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
18
|
Nguyên UC, Verzaal NJ, van Nieuwenhoven FA, Vernooy K, Prinzen FW. Pathobiology of cardiac dyssynchrony and resynchronization therapy. Europace 2018; 20:1898-1909. [DOI: 10.1093/europace/euy035] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 02/16/2018] [Indexed: 02/04/2023] Open
Affiliation(s)
- Uyên Châu Nguyên
- Department of Physiology, Cardiovascular Research Institute Maastricht, Universiteitssingel 50, ER Maastricht, The Netherlands
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Universiteitssingel 50, ER Maastricht, The Netherlands
| | - Nienke J Verzaal
- Department of Physiology, Cardiovascular Research Institute Maastricht, Universiteitssingel 50, ER Maastricht, The Netherlands
| | - Frans A van Nieuwenhoven
- Department of Physiology, Cardiovascular Research Institute Maastricht, Universiteitssingel 50, ER Maastricht, The Netherlands
| | - Kevin Vernooy
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Universiteitssingel 50, ER Maastricht, The Netherlands
| | - Frits W Prinzen
- Department of Physiology, Cardiovascular Research Institute Maastricht, Universiteitssingel 50, ER Maastricht, The Netherlands
| |
Collapse
|