1
|
Kim BS, Ahn JH, Shin JH, Kang MG, Kim KH, Bae JS, Cho YH, Koh JS, Park Y, Hwang SJ, Tantry US, Gurbel PA, Hwang JY, Jeong YH. Long-term prognostic implications of brachial-ankle pulse wave velocity in patients undergoing percutaneous coronary intervention. Front Med (Lausanne) 2024; 11:1384981. [PMID: 38912344 PMCID: PMC11190319 DOI: 10.3389/fmed.2024.1384981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 05/16/2024] [Indexed: 06/25/2024] Open
Abstract
Objective The long-term clinical effect of arterial stiffness in high-risk disease entities remains unclear. The prognostic implications of brachial-ankle pulse wave velocity (baPWV) were assessed using a real-world registry that included patients who underwent percutaneous coronary intervention (PCI). Methods Arterial stiffness was measured using baPWV before discharge. The primary outcome was net adverse clinical events (NACE), defined as a composite of all-cause death, non-fatal myocardial infarction, non-fatal stroke, or major bleeding. Secondary outcomes included major adverse cardiac and cerebrovascular events (MACCE: a composite of all-cause death, non-fatal myocardial infarction, or non-fatal stroke), and major bleeding. The outcomes were assessed over a 4-year period. Results Patients (n = 3,930) were stratified into high- and low-baPWV groups based on a baPWV cut-off of 1891 cm/s determined through time-dependent receiver operating characteristic curve analysis. baPWV was linearly correlated with 4-year post-PCI clinical events. The high baPWV group had a greater cumulative incidence of NACE, MACCE, and major bleeding. According to multivariable analysis, the high baPWV groups had a significantly greater risk of 4-year NACE (adjusted hazard ratio [HRadj]: 1.44; 95% confidence interval [CI]: 1.12-1.85; p = 0.004), MACCE (HRadj: 1.40; 95% CI: 1.07-1.83; p = 0.015), and major bleeding (HRadj: 1.94; 95% CI: 1.15-3.25; p = 0.012). Conclusion In PCI-treated patients, baPWV was significantly associated with long-term clinical outcomes, including ischemic and bleeding events, indicating its value for identifying high-risk phenotypes.
Collapse
Affiliation(s)
- Byung Sik Kim
- Division of Cardiology, Department of Internal Medicine, Hanyang University College of Medicine, Hanyang University Guri Hospital, Guri-si, Republic of Korea
| | - Jong-Hwa Ahn
- Department of Internal Medicine, Gyeongsang National University School of Medicine and Cardiovascular Center, Gyeongsang National University Changwon Hospital, Changwon-si, Republic of Korea
| | - Jeong-Hun Shin
- Division of Cardiology, Department of Internal Medicine, Hanyang University College of Medicine, Hanyang University Guri Hospital, Guri-si, Republic of Korea
| | - Min Gyu Kang
- Department of Internal Medicine, Gyeongsang National University School of Medicine and Division of Cardiology, Gyeongsang National University Hospital, Jinju-si, Republic of Korea
| | - Kye-Hwan Kim
- Department of Internal Medicine, Gyeongsang National University School of Medicine and Division of Cardiology, Gyeongsang National University Hospital, Jinju-si, Republic of Korea
| | - Jae Seok Bae
- Department of Internal Medicine, Gyeongsang National University School of Medicine and Cardiovascular Center, Gyeongsang National University Changwon Hospital, Changwon-si, Republic of Korea
| | - Yun Ho Cho
- Department of Internal Medicine, Gyeongsang National University School of Medicine and Cardiovascular Center, Gyeongsang National University Changwon Hospital, Changwon-si, Republic of Korea
| | - Jin-Sin Koh
- Department of Internal Medicine, Gyeongsang National University School of Medicine and Division of Cardiology, Gyeongsang National University Hospital, Jinju-si, Republic of Korea
| | - Yongwhi Park
- Department of Internal Medicine, Gyeongsang National University School of Medicine and Cardiovascular Center, Gyeongsang National University Changwon Hospital, Changwon-si, Republic of Korea
| | - Seok-Jae Hwang
- Department of Internal Medicine, Gyeongsang National University School of Medicine and Division of Cardiology, Gyeongsang National University Hospital, Jinju-si, Republic of Korea
| | - Udaya S. Tantry
- Sinai Center for Thrombosis Research and Drug Development, Sinai Hospital of Baltimore, Baltimore, MD, United States
| | - Paul A. Gurbel
- Sinai Center for Thrombosis Research and Drug Development, Sinai Hospital of Baltimore, Baltimore, MD, United States
| | - Jin-Yong Hwang
- Department of Internal Medicine, Gyeongsang National University School of Medicine and Division of Cardiology, Gyeongsang National University Hospital, Jinju-si, Republic of Korea
| | - Young-Hoon Jeong
- CAU Thrombosis and Biomarker Center, Chung-Ang University Gwangmyeong Hospital, Gwangmyeong-si, Republic of Korea
- Division of Cardiology, Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Phan J, Elgendi K, Javeed M, Aranda JM, Ahmed MM, Vilaro J, Al-Ani M, Parker AM. Thrombotic and Hemorrhagic Complications Following Left Ventricular Assist Device Placement: An Emphasis on Gastrointestinal Bleeding, Stroke, and Pump Thrombosis. Cureus 2023; 15:e51160. [PMID: 38283491 PMCID: PMC10811971 DOI: 10.7759/cureus.51160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/27/2023] [Indexed: 01/30/2024] Open
Abstract
The left ventricular assist device (LVAD) is a mechanical circulatory support device that supports the heart failure patient as a bridge to transplant (BTT) or as a destination therapy for those who have other medical comorbidities or complications that disqualify them from meeting transplant criteria. In patients with severe heart failure, LVAD use has extended survival and improved signs and symptoms of cardiac congestion and low cardiac output, such as dyspnea, fatigue, and exercise intolerance. However, these devices are associated with specific hematologic and thrombotic complications. In this manuscript, we review the common hematologic complications of LVADs.
Collapse
Affiliation(s)
- Joseph Phan
- Internal Medicine, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Clearwater, USA
| | - Kareem Elgendi
- Internal Medicine, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Clearwater, USA
| | - Masi Javeed
- Internal Medicine, HCA Healthcare/University of South Florida Morsani College of Medicine, Graduate Medical Education: Bayonet Point Hospital, Hudson, USA
| | - Juan M Aranda
- Department of Medicine, Division of Cardiovascular Medicine, University of Florida College of Medicine, Gainesville, USA
| | - Mustafa M Ahmed
- Department of Medicine, Division of Cardiovascular Medicine, University of Florida College of Medicine, Gainesville, USA
| | - Juan Vilaro
- Department of Medicine, Division of Cardiovascular Medicine, University of Florida College of Medicine, Gainesville, USA
| | - Mohammad Al-Ani
- Department of Medicine, Division of Cardiovascular Medicine, University of Florida College of Medicine, Gainesville, USA
| | - Alex M Parker
- Department of Medicine, Division of Cardiovascular Medicine, University of Florida College of Medicine, Gainesville, USA
| |
Collapse
|
3
|
Stöhr EJ, Ji R, Mondellini G, Braghieri L, Akiyama K, Castagna F, Pinsino A, Cockcroft JR, Silverman RH, Trocio S, Zatvarska O, Konofagou E, Apostolakis I, Topkara VK, Takayama H, Takeda K, Naka Y, Uriel N, Yuzefpolskaya M, Willey JZ, McDonnell BJ, Colombo PC. Pulsatility and flow patterns across macro- and microcirculatory arteries of continuous-flow left ventricular assist device patients. J Heart Lung Transplant 2023; 42:1223-1232. [PMID: 37098374 PMCID: PMC11078160 DOI: 10.1016/j.healun.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 04/04/2023] [Accepted: 04/04/2023] [Indexed: 04/27/2023] Open
Abstract
BACKGROUND Reduced arterial pulsatility in continuous-flow left ventricular assist devices (CF-LVAD) patients has been implicated in clinical complications. Consequently, recent improvements in clinical outcomes have been attributed to the "artificial pulse" technology inherent to the HeartMate3 (HM3) LVAD. However, the effect of the "artificial pulse" on arterial flow, transmission of pulsatility into the microcirculation and its association with LVAD pump parameters is not known. METHODS The local flow oscillation (pulsatility index, PI) of common carotid arteries (CCAs), middle cerebral arteries (MCAs) and central retinal arteries (CRAs-representing the microcirculation) were quantified by 2D-aligned, angle-corrected Doppler ultrasound in 148 participants: healthy controls, n = 32; heart failure (HF), n = 43; HeartMate II (HMII), n = 32; HM3, n = 41. RESULTS In HM3 patients, 2D-Doppler PI in beats with "artificial pulse" and beats with "continuous-flow" was similar to that of HMII patients across the macro- and microcirculation. Additionally, peak systolic velocity did not differ between HM3 and HMII patients. Transmission of PI into the microcirculation was higher in both HM3 (during the beats with "artificial pulse") and in HMII patients compared with HF patients. LVAD pump speed was inversely associated with microvascular PI in HMII and HM3 (HMII, r2 = 0.51, p < 0.0001; HM3 "continuous-flow," r2 = 0.32, p = 0.0009; HM3 "artificial pulse," r2 = 0.23, p = 0.007), while LVAD pump PI was only associated with microcirculatory PI in HMII patients. CONCLUSIONS The "artificial pulse" of the HM3 is detectable in the macro- and microcirculation but without creating a significant alteration in PI compared with HMII patients. Increased transmission of pulsatility and the association between pump speed and PI in the microcirculation indicate that the future clinical care of HM3 patients may involve individualized pump settings according to the microcirculatory PI in specific end-organs.
Collapse
Affiliation(s)
- Eric J Stöhr
- School of Sport & Health Sciences, Cardiff Metropolitan University, Cardiff, UK; Department of Medicine, Division of Cardiology, Columbia University Irving Medical Center, New York, New York.
| | - Ruiping Ji
- Department of Medicine, Division of Cardiology, Columbia University Irving Medical Center, New York, New York
| | - Giulio Mondellini
- Department of Medicine, Division of Cardiology, Columbia University Irving Medical Center, New York, New York
| | - Lorenzo Braghieri
- Department of Medicine, Division of Cardiology, Columbia University Irving Medical Center, New York, New York; Department of Internal Medicine, Cleveland Clinic, Cleveland, Ohio
| | - Koichi Akiyama
- Department of Medicine, Division of Cardiothoracic Surgery, Columbia University Irving Medical Center, New York, New York; Department of Cardiovascular Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Francesco Castagna
- Department of Medicine, Division of Cardiology, Columbia University Irving Medical Center, New York, New York; Cardiology Division, Montefiore Medical Center, New York, New York
| | - Alberto Pinsino
- Department of Medicine, Division of Cardiology, Columbia University Irving Medical Center, New York, New York
| | - John R Cockcroft
- School of Sport & Health Sciences, Cardiff Metropolitan University, Cardiff, UK; Department of Medicine, Division of Cardiology, Columbia University Irving Medical Center, New York, New York
| | - Ronald H Silverman
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, New York, New York
| | - Samuel Trocio
- Department of Neurology, Columbia University Irving Medical Center, New York, New York
| | - Oksana Zatvarska
- Department of Medicine, Division of Cardiology, Columbia University Irving Medical Center, New York, New York
| | - Elisa Konofagou
- Department of Biomedical Engineering, Columbia University Irving Medical Center, New York, New York
| | - Iason Apostolakis
- Department of Biomedical Engineering, Columbia University Irving Medical Center, New York, New York
| | - Veli K Topkara
- Department of Medicine, Division of Cardiology, Columbia University Irving Medical Center, New York, New York
| | - Hiroo Takayama
- Department of Internal Medicine, Cleveland Clinic, Cleveland, Ohio
| | - Koji Takeda
- Department of Internal Medicine, Cleveland Clinic, Cleveland, Ohio
| | - Yoshifumi Naka
- Department of Internal Medicine, Cleveland Clinic, Cleveland, Ohio
| | - Nir Uriel
- Department of Medicine, Division of Cardiology, Columbia University Irving Medical Center, New York, New York
| | - Melana Yuzefpolskaya
- Department of Medicine, Division of Cardiology, Columbia University Irving Medical Center, New York, New York
| | - Joshua Z Willey
- Department of Neurology, Columbia University Irving Medical Center, New York, New York
| | - Barry J McDonnell
- School of Sport & Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - Paolo C Colombo
- Department of Medicine, Division of Cardiology, Columbia University Irving Medical Center, New York, New York
| |
Collapse
|
4
|
Neurologic Complications in Patients With Left Ventricular Assist Devices. Can J Cardiol 2023; 39:210-221. [PMID: 36400374 PMCID: PMC9905352 DOI: 10.1016/j.cjca.2022.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Left ventricular assist device (LVAD) use has revolutionised the care of patients with advanced heart failure, allowing more patients to survive until heart transplantation and providing improved quality for patients unable to undergo transplantation. Despite these benefits, improvements in device technology, and better clinical care and experience, LVADs are associated with neurologic complications. This review provides information on the incidence, risk factors, and management of neurologic complications among LVAD patients. Although scant guidelines exist for the evaluation and management of neurologic complications in LVAD patients, a high index of suspicion can prompt early detection of neurologic complications which may improve overall neurologic outcomes. A better understanding of the implications of continuous circulatory flow on systemic and cerebral vasculature is necessary to reduce the common occurrence of neurologic complications in this population.
Collapse
|
5
|
The Effect of Age on Non-Invasive Hemodynamics in Chronic Heart Failure Patients on Left-Ventricular Assist Device Support: A Pilot Study. J Clin Med 2022; 12:jcm12010029. [PMID: 36614830 PMCID: PMC9821125 DOI: 10.3390/jcm12010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/09/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Background: Implantation of continuous flow left ventricular assist devices (LVAD’s) has been increasingly used in patients with advanced heart failure (HF). Little is known about the non-invasive hemodynamics and the relationship with adverse events in this specific group of patients. We aimed to identify any differences in non-invasive hemodynamics in patients with an LVAD in different age categories and to investigate if there is an association with major adverse events. Methods: In this observational cross-sectional study, HF patients with a continuous flow LVAD were included. Non-invasive hemodynamic parameters were measured with a validated, automated oscillometric blood pressure monitor. The occurrences of adverse events were registered by reviewing the medical records of the patients. An independent-samples T-test and Chi-square test were used to compare different groups of patients. Results: Forty-seven patients were included; of these, only 12 (25.6%) had a successful measurement. Heart rate, heart rate-adjusted augmentation index, and pulse wave velocity were higher in the ≥55 years of age LVAD group compared to the <55 years of age LVAD group (all p < 0.05). Stroke volume was significantly lower in the ≥55 years of age LVAD group compared to the <55 years of age LVAD group (p = 0.015). Patients with adverse events such as cardiovascular events, GI-bleeding, or admission to a hospital had lower central pulse pressure (cPP) than patients without any adverse event. Conclusion: Older LVAD patients have a significantly higher heart rate, heart rate-adjusted augmentation index, and pulse wave velocity and a significantly lower stroke volume compared to participants aged < 55 years. The pulsatile component of blood pressure was decreased in patients with adverse events.
Collapse
|
6
|
Adji A, Shehab S, Jain P, Robson D, Jansz P, Hayward CS. Arterial Compliance and Continuous-Flow Left Ventricular Assist Device Pump Function. ASAIO J 2022; 68:925-931. [PMID: 35544445 DOI: 10.1097/mat.0000000000001768] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Durable continuous-flow left ventricular assist devices (cfLVADs) demonstrate superior survival, cardiac functional status, and overall quality of life compared to medical therapy alone in advanced heart failure. Previous studies have not considered the impact arterial compliance may have on pump performance or developed arterial pressure. This study assessed the impact of alterations in arterial compliance, preload, and afterload on continuous-flow pump function and measured hemodynamics using an in-vitro pulsatile mock circulatory loop. Decreased arterial compliance was associated with a significant increase in arterial pressure pulsatility which was not evident in the flow pulsatility, as displayed in pump flow waveforms. There were marked changes in the pump flow waveforms due to the significant alteration in the aortoventricular gradient during diastole according to the changes in compliance. This study demonstrates that changes in systemic blood pressure, afterload, and left ventricular contractility each significantly affects the flow waveform. The association of hypertension with lower aortic compliance results in markedly decreased diastolic flow rates which may be important in contributing to a greater risk of adverse events under cfLVAD support.
Collapse
Affiliation(s)
- Audrey Adji
- From the Heart Failure and Transplant Unit, Cardiology Department, St Vincent's Hospital, Sydney, Australia
- Mechanical Circulatory Support Laboratory, Victor Chang Cardiac Research Institute, Sydney, Australia
- St Vincent's Clinical School, UNSW Medicine and Health, Sydney, Australia
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
| | - Sajad Shehab
- Mechanical Circulatory Support Laboratory, Victor Chang Cardiac Research Institute, Sydney, Australia
| | - Pankaj Jain
- From the Heart Failure and Transplant Unit, Cardiology Department, St Vincent's Hospital, Sydney, Australia
| | - Desiree Robson
- From the Heart Failure and Transplant Unit, Cardiology Department, St Vincent's Hospital, Sydney, Australia
| | - Paul Jansz
- From the Heart Failure and Transplant Unit, Cardiology Department, St Vincent's Hospital, Sydney, Australia
- Mechanical Circulatory Support Laboratory, Victor Chang Cardiac Research Institute, Sydney, Australia
- St Vincent's Clinical School, UNSW Medicine and Health, Sydney, Australia
- School of Medicine, University of Notre Dame, Sydney, Australia
| | - Christopher S Hayward
- From the Heart Failure and Transplant Unit, Cardiology Department, St Vincent's Hospital, Sydney, Australia
- Mechanical Circulatory Support Laboratory, Victor Chang Cardiac Research Institute, Sydney, Australia
- St Vincent's Clinical School, UNSW Medicine and Health, Sydney, Australia
| |
Collapse
|