1
|
Mardanpour MM, Sudalaiyadum Perumal A, Mahmoodi Z, Baassiri K, Montiel-Rubies G, LeDez KM, Nicolau DV. Investigation of air bubble behaviour after gas embolism events induced in a microfluidic network mimicking microvasculature. LAB ON A CHIP 2024; 24:2518-2536. [PMID: 38623600 DOI: 10.1039/d4lc00087k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Gas embolism is a medical condition that occurs when gas bubbles are present in veins or arteries, decreasing blood flow and potentially reducing oxygen delivery to vital organs, such as the brain. Although usually reported as rare, gas embolism can lead to severe neurological damage or death. However, presently, only limited understanding exists regarding the microscale processes leading to the formation, persistence, movement, and resolution of gas emboli, as modulated by microvasculature geometrical features and blood properties. Because gas embolism is initially a physico-chemical-only process, with biological responses starting later, the opportunity exists to fully study the genesis and evolution of gas emboli using in vitro microfluidic networks mimicking small regions of microvasculature. The microfluidics networks used in this study, which aim to mimic microvasculature geometry, comprise linear channels with T-, or Y-junction air inlets, with 20, 40, and 60 μm widths (arterial or venous), and a 30 μm width honeycombed network (arterial) with three bifurcation angles (30°, 60°, and 90°). Synthetic blood, equivalent to 46% haematocrit concentrations, and water were used to study the modulation of gas embolism-like events by liquid viscosity. Our study shows that (i) longer bubbles with lower velocity occur in narrower channels, e.g., with 20 μm width; (ii) the resistance of air bubbles to the flow increases with the higher haematocrit concentration; and lastly (iii) the propensity of gas embolism-like events in honeycomb architectures increases for more acute, e.g., 30°, bifurcation angles. A dimensionless analysis using Euler, Weber, and capillary numbers demarcated the conditions conducive to gas embolism. This work suggests that in vitro experimentation using microfluidic devices with microvascular tissue-like structures could assist medical guidelines and management in preventing and mitigating the effects of gas embolism.
Collapse
Affiliation(s)
- Mohammad Mahdi Mardanpour
- Department of Bioengineering, Faculty of Engineering, McGill University, Montreal, Québec, H3A 0E9, Canada.
| | | | - Zahra Mahmoodi
- Department of Bioengineering, Faculty of Engineering, McGill University, Montreal, Québec, H3A 0E9, Canada.
| | - Karine Baassiri
- Department of Bioengineering, Faculty of Engineering, McGill University, Montreal, Québec, H3A 0E9, Canada.
| | - Gala Montiel-Rubies
- Department of Bioengineering, Faculty of Engineering, McGill University, Montreal, Québec, H3A 0E9, Canada.
| | - Kenneth M LeDez
- Faculty of Medicine, Health Sciences Centre, Memorial University, St. John's, Newfoundland and Labrador, A1C 5S7, Canada
| | - Dan V Nicolau
- Department of Bioengineering, Faculty of Engineering, McGill University, Montreal, Québec, H3A 0E9, Canada.
| |
Collapse
|
2
|
Olds K, Byard RW, Langlois NEI. Injuries associated with resuscitation - An overview. J Forensic Leg Med 2015; 33:39-43. [PMID: 26048495 DOI: 10.1016/j.jflm.2015.04.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 04/07/2015] [Accepted: 04/08/2015] [Indexed: 12/29/2022]
Abstract
External cardiopulmonary resuscitation is a potentially lifesaving intervention aimed at preserving the cerebral function of a person in cardiac arrest. However, certain injuries can be caused by the various techniques employed. Although these are seldom consequential, they may complicate the forensic evaluation of cases. Fractures of the ribs and sternum are the most common internal injuries and are frequently acknowledged as a consequence of resuscitation. Nonethlesss, the recognition that less common fractures such as of the larynx or injuries involving the stomach, spleen, heart and liver can occur due to resuscitation will assist the forensic examiner assess the significance of these findings when they present in cases of sudden death.
Collapse
Affiliation(s)
- Kelly Olds
- School of Health Sciences, The University of Adelaide, Australia
| | - Roger W Byard
- Forensic Science SA & School of Health Sciences, University of Adelaide, Australia
| | - Neil E I Langlois
- Forensic Science SA & School of Health Sciences, University of Adelaide, Australia.
| |
Collapse
|
3
|
Haas NA, Happel CM, Jategaonkar S, Moysich A, Hanslik A, Kececioglu D, Sandica E, Laser KT. Compression, distortion and dislodgement of large caliber stents in congenital heart defects caused by cardiopulmonary resuscitation: a case series and review of the literature. Clin Res Cardiol 2014; 103:719-25. [PMID: 24700361 DOI: 10.1007/s00392-014-0706-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 03/24/2014] [Indexed: 02/07/2023]
Abstract
Stenting of vascular, extracardiac or lately intracardiac stenosis has become an established interventional treatment for a variety of problems in congenital or acquired heart disease. Most stent procedures are completed successfully and the long-term outcome is favorable in the majority of cases. Stent collapse or deformation is a well recognized entity in peripheral stents and can be attributed to insufficient radial force; it can also be attributed to excessive external forces, like deformation of stents in the right ventricular outflow tract, where external compression is combined with continuous movement caused by the beating heart. The protection of the thoracic cage may prove to be insufficient in extraordinary circumstances, such as chest compression in trauma or cardiopulmonary resuscitation (CPR). In this case series, we describe three patients in whom large endovascular stents were placed to treat significant stenosis of the aorta, the aortic arch or the venous system of the inferior vena cava close to the atrium. In all patients, CPR was necessary during their clinical course for various reasons; after adequate CPR, including appropriate chest compression all patients survived the initial resuscitation phase. Clinical, echocardiographic as well as radiologic re-evaluation after resuscitation revealed significant stent distortion, compression, displacement or additional vascular injury. The possibility of mechanical deformation of large endovascular stents needs to be considered and recognized when performing CPR; if CPR is successful, immediate re-evaluation of the implanted stents--if possible by biplane fluoroscopy--seems mandatory.
Collapse
Affiliation(s)
- Nikolaus A Haas
- Department of Congenital Heart Defects, Heart and Diabetes Centre North Rhine Westphalia, Ruhr University Bochum, Georgstrasse 11, 32545, Bad Oeynhausen, Germany,
| | | | | | | | | | | | | | | |
Collapse
|