1
|
Miquel-Rio L, Sarriés-Serrano U, Sancho-Alonso M, Florensa-Zanuy E, Paz V, Ruiz-Bronchal E, Manashirov S, Campa L, Pilar-Cuéllar F, Bortolozzi A. ER stress in mouse serotonin neurons triggers a depressive phenotype alleviated by ketamine targeting eIF2α signaling. iScience 2024; 27:109787. [PMID: 38711453 PMCID: PMC11070602 DOI: 10.1016/j.isci.2024.109787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/19/2024] [Accepted: 04/16/2024] [Indexed: 05/08/2024] Open
Abstract
Depression is a devastating mood disorder that causes significant disability worldwide. Current knowledge of its pathophysiology remains modest and clear biological markers are lacking. Emerging evidence from human and animal models reveals persistent alterations in endoplasmic reticulum (ER) homeostasis, suggesting that ER stress-related signaling pathways may be targets for prevention and treatment. However, the neurobiological basis linking the pathways involved in depression-related ER stress remains unknown. Here, we report that an induced model of ER stress in mouse serotonin (5-HT) neurons is associated with reduced Egr1-dependent 5-HT cellular activity and 5-HT neurotransmission, resulting in neuroplasticity deficits in forebrain regions and a depressive-like phenotype. Ketamine administration engages downstream eIF2α signaling to trigger rapid neuroplasticity events that rescue the depressive-like effects. Collectively, these data identify ER stress in 5-HT neurons as a cellular pathway involved in the pathophysiology of depression and show that eIF2α is critical in eliciting ketamine's fast antidepressant effects.
Collapse
Affiliation(s)
- Lluis Miquel-Rio
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain
- Systems Neuropharmacology Research Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
- Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
- University of Barcelona (UB), 08036 Barcelona, Spain
| | - Unai Sarriés-Serrano
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain
- Systems Neuropharmacology Research Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
- Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
- University of the Basque Country UPV/EHU, E-48940 Leioa, Bizkaia, Spain
| | - María Sancho-Alonso
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain
- Systems Neuropharmacology Research Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
- Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - Eva Florensa-Zanuy
- Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
- Department of Molecular and Cellular Signaling, Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), University of Cantabria-CSIC, 39011 Santander, Spain
| | - Verónica Paz
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain
- Systems Neuropharmacology Research Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
- Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - Esther Ruiz-Bronchal
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain
- Systems Neuropharmacology Research Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
- Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - Sharon Manashirov
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain
- Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
- miCure Therapeutics LTD., Tel-Aviv 6423902, Israel
| | - Leticia Campa
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain
- Systems Neuropharmacology Research Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
- Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - Fuencisla Pilar-Cuéllar
- Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
- Department of Molecular and Cellular Signaling, Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), University of Cantabria-CSIC, 39011 Santander, Spain
| | - Analia Bortolozzi
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain
- Systems Neuropharmacology Research Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
- Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| |
Collapse
|
2
|
Liu X, Li T, Sun J, Wang Z. The Role of Endoplasmic Reticulum Stress in Calcific Aortic Valve Disease. Can J Cardiol 2023; 39:1571-1580. [PMID: 37516250 DOI: 10.1016/j.cjca.2023.07.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/28/2023] [Accepted: 07/23/2023] [Indexed: 07/31/2023] Open
Abstract
Calcific aortic valve disease (CAVD), which is involved in osteogenic reprogramming of valvular interstitial cells, is the most common form of valve disease. It still lacks effective pharmacologic intervention, as its cellular biological mechanisms remain unclear. Congenital abnormality (bicuspid valve) and older age are considered to be the most powerful risk factors for CAVD. Aortic valve sclerosis (AVS) and calcific aortic stenosis (CAS), 2 subclinical forms of CAVD, represent 2 distinct stages of aortic valve calcification. During the AVS stage, the disease is characterised by endothelial activation/damage, inflammatory response, and lipid infiltration accompanied by microcalcification. The CAS stage is dominated by calcification, resulting in valvular dysfunction and severe obstruction to cardiac outflow, which is life threatening if surgery is not performed in time. Endoplasmic reticulum (ER) stress, a state in which conditions disrupting ER homeostasis cause an accumulation of unfolded and misfolded proteins in the ER lumen, has been shown to promote osteogenic differentiation and aortic valve calcification. Therefore, identifying targets or drugs for suppressing ER stress may be a novel approach for CAVD treatment.
Collapse
Affiliation(s)
- Xiaolin Liu
- Department of Cardiac Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; Medicial Science and Technology Innovation Center, Shandong First Medical University, Jinan, Shandong, China
| | - Ting Li
- School of Life Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, Shandong, China
| | - Jun Sun
- Department of Cardiac Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Zhengjun Wang
- Department of Cardiac Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| |
Collapse
|
3
|
Bian X, Fan N, Li M, Han D, Li J, Fan L, Li X, Kong L, Tang H, Ding S, Song F, Li S, Cheng W. An ER-Horse Detonating Stress Cascade for Hepatocellular Carcinoma Nanotherapy. ACS NANO 2023; 17:4896-4912. [PMID: 36811530 DOI: 10.1021/acsnano.2c11922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Persisting and excessive endoplasmic reticulum stress (ERS) can evoke rapid cell apoptosis. Therapeutic interference of ERS signaling holds enormous potential for cancer nanotherapy. Herein, a hepatocellular carcinoma (HCC) cell-derived ER vesicle (ERV) encapsulating siGRP94, denoted as ER-horse, has been developed for precise HCC nanotherapy. Briefly, ER-horse, like the Trojan horse, was recognized via homotypic camouflage, imitated the physiological function of ER, and exogenously opened the Ca2+ channel. Consequently, the mandatory pouring-in of extracellular Ca2+ triggered the aggravated stress cascade (ERS and oxidative stress) and apoptosis pathway with the inhibition of unfolded protein response by siGRP94. Collectively, our findings provide a paradigm for potent HCC nanotherapy via ERS signaling interference and exploring therapeutic interference of physiological signal transduction pathways for precision cancer therapy.
Collapse
Affiliation(s)
- Xintong Bian
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
- Molecular Medicine and Cancer Research Center, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Ningke Fan
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Meng Li
- The Second Affliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Daobin Han
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Jia Li
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Lu Fan
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Xinyu Li
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Liangsheng Kong
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Hua Tang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Fangzhou Song
- Molecular Medicine and Cancer Research Center, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Siqiao Li
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Wei Cheng
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| |
Collapse
|
4
|
Icariin promotes the repair of PC12 cells by inhibiting endoplasmic reticulum stress. BMC Complement Med Ther 2021; 21:69. [PMID: 33607999 PMCID: PMC7896365 DOI: 10.1186/s12906-021-03233-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 01/31/2021] [Indexed: 11/17/2022] Open
Abstract
Background Endoplasmic reticulum stress (ERS) is one of the main mechanisms of spinal cord injury (SCI) pathology and can affect the physiological state of neurons. Icariin (ICA), the main pharmacological component of Epimedium, can relieve the symptoms of patients with SCI and has obvious protective effects on neurons through ERS. Methods PC12 cells were induced to differentiate into neurons by nerve growth factor and identified by flow cytometry. Cell proliferation was detected by CCK8 method, cell viability was detected by SRB assay, apoptosis was detected by flow cytometry and microstructure of ER was observed by transmission electron microscope. Western blot was used to detect the protein expression of CHOP and Grp78, and qPCR was used to detect the mRNA expression of CHOP and Grp78. Results The results of CCK8, SRB and flow cytometry showed that ICA could relieve ERS and reduce apoptosis of PC12 cells. The results of transmission microscope showed that ICA could reduce apoptosis of PC12 cells caused by ERS. The results of Western blot and q-PCR showed that ICA could inhibit ERS by down-regulating the expression of CHOP and Grp78. Conclusions ICA can inhibit ERS and promote the repair of PC12 cells by down-regulating the expression of CHOP and Grp78. ICA has the potential to promote the recovery of spinal cord injury. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-021-03233-1.
Collapse
|
5
|
Diazoxide Protects against Myocardial Ischemia/Reperfusion Injury by Moderating ERS via Regulation of the miR-10a/IRE1 Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4957238. [PMID: 32963696 PMCID: PMC7495230 DOI: 10.1155/2020/4957238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 06/16/2020] [Accepted: 07/17/2020] [Indexed: 12/12/2022]
Abstract
Nowadays, reperfusion is still the most effective treatment for ischemic heart disease. However, cardiac reperfusion therapy would lead to reperfusion injury, which may have resulted from endoplasmic reticulum stress (ERS) during reperfusion. Diazoxide (DZ) is a highly selective mitochondrial adenosine triphosphate-sensitive potassium channel opener. Its protective effect on I/R injury has been confirmed in many organs such as the heart and brain. However, the mechanism of its protective effect has not been fully elucidated. MicroRNAs (miRNAs) are widely involved in pathologies of heart disease. In this study, we found that miR-10a expression was highly upregulated in the myocardial I/R groups, and DZ treatment significantly reduced the expression of miR-10a. More importantly, we found that DZ treatment can moderate ERS via regulation of the miR-10a/IRE1 pathway in the I/R and H/R models, thereby protecting myocardial H/R injury.
Collapse
|
6
|
Aslani MR, Ghobadi H, Panahpour H, Ahmadi M, Khaksar M, Heidarzadeh M. Modification of lung endoplasmic reticulum genes expression and NF-kB protein levels in obese ovalbumin-sensitized male and female rats. Life Sci 2020; 247:117446. [PMID: 32081662 DOI: 10.1016/j.lfs.2020.117446] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/11/2020] [Accepted: 02/17/2020] [Indexed: 12/21/2022]
Abstract
AIMS Previous studies showed a close relationship between obesity and asthma. In this study, we investigated the expression of endoplasmic reticulum (ER) stress genes in the lung tissue of obese ovalbumin (OVA)-sensitized male and female rats. MAIN METHODS The rats were divided into eight groups (n = 5 per group) as follows: female and male rats fed with normal diet (FND and MND, respectively), female and male OVA-sensitized rats fed with normal diet (F-OND and M-OND, respectively), female and male rats fed with high-fat diet (F-HFD and M-HFD, respectively), female and male OVA-sensitized rats fed with high-fat diet (F-OHFD and M-OHFD, respectively). All rats were fed with a high-fat diet or standard pelts for 8 weeks, and for another 4 weeks, they were sensitized by OVA or saline. At the end of the study, lung tissue NF-kB protein level was assessed, and ER stress markers genes expression was determined by Real Time-PCR. KEY FINDING OVA-sensitization and diet-induced obesity caused the curve of methacholine concentration-response to shift to the left. In addition, the results indicated that the EC50 (the effective concentration of methacholine generating 50% of peak response) in F-OHFD rats was statistically lower than that of the M-OHFD group (p < 0.05). Moreover, the results showed that diet-induced obesity increased the expression of ATF4, ATF6, GRP78, XBP-1, and CHOP as well as the protein level of NF-kB in this experimental model of asthma, markedly in the F-OHFD group. SIGNIFICANCE The results suggest that ER stress may be involved in the pathogenesis of asthma observed in obese OVA-sensitized rats, especially in the female animals.
Collapse
Affiliation(s)
- Mohammad Reza Aslani
- Lung Inflammatory Diseases Research Center, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran; Neurogenetic Inflammation Research Centre, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Hassan Ghobadi
- Department of Internal Medicine (Pulmonary Division), School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Hamdollah Panahpour
- Physiology Department, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Mahdi Ahmadi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Khaksar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Heidarzadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
7
|
Females Are More Resistant to Ischemia-Reperfusion-induced Intestinal Injury Than Males. Ann Surg 2019; 272:1070-1079. [PMID: 30614877 DOI: 10.1097/sla.0000000000003167] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
8
|
Yang L, Wang J, Yang J, Schamber R, Hu N, Nair S, Xiong L, Ren J. Antioxidant metallothionein alleviates endoplasmic reticulum stress-induced myocardial apoptosis and contractile dysfunction. Free Radic Res 2016; 49:1187-98. [PMID: 25968954 DOI: 10.3109/10715762.2015.1013952] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
AIMS Endoplasmic reticulum (ER) stress exerts myocardial oxidative stress, apoptosis, and contractile anomalies, although the precise interplay between ER stress and apoptosis remains elusive. This study was designed to examine the impact of the cysteine-rich free radical scavenger metallothionein on ER stress-induced myocardial contractile defect and underlying mechanisms. METHODS AND RESULTS Wild-type friendly virus B and transgenic mice with cardiac-specific overexpression of metallothionein were challenged with the ER stress inducer tunicamycin (1 mg/kg, intraperitoneal, 48 h) prior to the assessment of myocardial function, oxidative stress, and apoptosis. Our results revealed that tunicamycin promoted cardiac remodeling (enlarged left ventricular end systolic/diastolic diameters with little changes in left ventricular wall thickness), suppressed fractional shortening and cardiomyocyte contractile function, elevated resting Ca(2+), decreased stimulated Ca(2+) release, prolonged intracellular Ca(2+) clearance, and downregulated sarco(endo)plasmic reticulum Ca(2+)-ATPase levels, the effects of which were negated by metallothionein. Treatment with tunicamycin caused cardiomyocyte mitochondrial injury, as evidenced by decreased mitochondrial membrane potential (∆Ѱm, assessed by JC-1 staining), the effect of which was negated by the antioxidant. Moreover, tunicamycin challenge dramatically facilitated myocardial apoptosis as manifested by increased Bax, caspase 9, and caspase 12 protein levels, as well as elevated caspase 3 activity. Interestingly, metallothionein transgene significantly alleviated tunicamycin-induced myocardial apoptosis. CONCLUSION Taken together, our data favor a beneficial effect of metallothionein against ER stress-induced cardiac dysfunction possibly associated with attenuation of myocardial apoptosis.
Collapse
Affiliation(s)
- L Yang
- a Department of Anesthesiology , Xijing Hospital, the Fourth Military Medical University , Xi'an , P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Dai SY, Fan J, Shen Y, He JJ, Peng W. Endoplasmic reticulum stress in the brain subfornical organ contributes to sex differences in angiotensin-dependent hypertension in rats. Acta Physiol (Oxf) 2016; 217:33-44. [PMID: 26639993 DOI: 10.1111/apha.12635] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 11/05/2015] [Accepted: 11/25/2015] [Indexed: 01/16/2023]
Abstract
AIM Endoplasmic reticulum (ER) stress in the brain subfornical organ (SFO), a key cardiovascular regulatory centre, has been implicated in angiotensin (ANG) II-induced hypertension in males; however, the contribution of ER stress to ANG II-induced hypertension in females is unknown. Female hormones have been shown to prevent ER stress in the periphery. We tested the hypothesis that females are less susceptible to ANG II-induced SFO ER stress than males, leading to sex differences in hypertension. METHODS Male, intact and ovariectomized (OVX) female rats received a continuous 2-week subcutaneous infusion of ANG II or saline. Additional male, intact and OVX female rats received intracerebroventricular (ICV) injection of ER stress inducer tunicamycin. RESULTS ANG II, but not saline, increased blood pressure (BP) in both males and females, but intact females exhibited smaller increase in BP and less depressor response to ganglionic blockade compared with males or OVX females. Molecular studies revealed that ANG II elevated expression of ER stress biomarkers and Fra-like activity in the SFO in both males and females; however, elevations in these parameters were less in intact females than in males or OVX females. Moreover, ICV tunicamycin induced smaller elevation in BP and less increase in expression of ER stress biomarkers in the SFO in intact females compared with males or OVX females. CONCLUSION The results suggest that differences in ANG II-induced brain ER stress between males and females contribute to sex differences in ANG II-mediated hypertension and that oestrogen protects females against ANG II-induced brain ER stress.
Collapse
Affiliation(s)
- S.-Y. Dai
- Department of Obstetrics and Gynecology; Shengjing Hospital; China Medical University; Shenyang China
| | - J. Fan
- Department of Pathology; Hebei North University; Zhangjiakou China
| | - Y. Shen
- Department of Obstetrics and Gynecology; Shengjing Hospital; China Medical University; Shenyang China
| | - J.-J. He
- Department of Obstetrics and Gynecology; Shengjing Hospital; China Medical University; Shenyang China
| | - W. Peng
- Life Science Research Center and Department of Physiology and Pathophysiology; Hebei North University; Zhangjiakou China
| |
Collapse
|
10
|
Sex differences in liver toxicity-do female and male human primary hepatocytes react differently to toxicants in vitro? PLoS One 2015; 10:e0122786. [PMID: 25849576 PMCID: PMC4388670 DOI: 10.1371/journal.pone.0122786] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 02/18/2015] [Indexed: 01/10/2023] Open
Abstract
There is increasing amount of evidence for sex variation in drug efficiency and toxicity profiles. Women are more susceptible than men to acute liver injury from xenobiotics. In general, this is attributed to sex differences at a physiological level as well as differences in pharmacokinetics and pharmacodynamics, but neither of these can give a sufficient explanation for the diverse responses to xenobiotics. Existing data are mainly based on animal models and limited data exist on in vitro sex differences relevant to humans. To date, male and female human hepatocytes have not yet been compared in terms of their responses to hepatotoxic drugs. We investigated whether sex-specific differences in acute hepatotoxicity can be observed in vitro by comparing hepatotoxic drug effects in male and female primary human hepatocytes. Significant sex-related differences were found for certain parameters and individual drugs, showing an overall higher sensitivity of female primary hepatocytes to hepatotoxicants. Moreover, our work demonstrated that high content screening is feasible with pooled primary human hepatocytes in suspension.
Collapse
|
11
|
Abstract
Although surfactin is able to inhibit cancer cell proliferation and to induce cancer cell apoptosis, the molecular mechanism responsible for this process remain elusive. In this study, the signaling network underlying the apoptosis of human hepatoma (HepG2) cells induced by surfactin was investigated. It is found that the reaction oxygen species (ROS) production and intracellular calcium ([Ca(2+)]i) accumulation are both induced HepG2 cells apoptosis. The [Ca(2+)]i exaltation was partly depended on the Ca(2+) release from inositol 1,4,5-trisphosphate (IP3) and ryanodine (Ry) receptors channels, which both triggered endoplasmic reticulum stress (ERS). The results showed that surfactin induced the ROS production and ROS production led to ERS. The occurrence of ERS increased the [Ca(2+)]i level and the processes associated with blocking extracellular signal-regulated kinase (ERK) pathway. According to a comprehensive review of all the evidence, it is concluded that surfactin induces apoptosis of HepG2 cells through a ROS-ERS-Ca(2+) mediated ERK pathway.
Collapse
|
12
|
Abstract
Hypertension is a complex and multifaceted disease, and there are well established sex differences in many aspects of blood pressure (BP) control. The intent of this review is to highlight recent work examining sex differences in the molecular mechanisms of BP control in hypertension to assess whether the "one-size-fits-all" approach to BP control is appropriate with regard to sex.
Collapse
|
13
|
Millott R, Dudek E, Michalak M. The endoplasmic reticulum in cardiovascular health and disease. Can J Physiol Pharmacol 2012; 90:1209-17. [PMID: 22897133 DOI: 10.1139/y2012-058] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The endoplasmic reticulum has an intricate network of pathways built to deal with the secretory and integral membrane protein synthesis demands of the cell, as well as adaptive responses set up for the endoplasmic reticulum to rely on when stressed. These pathways are both essential and complex, and because of these 2 factors, several situations can lead to a dysfunctional endoplasmic reticulum and result in a dysfunctional cell with the potential to contribute to the progression of disease. The endoplasmic reticulum has been implicated in several metabolic, neurodegenerative, inflammatory, autoimmune, and renal diseases and disorders, and in particular, cardiovascular diseases. The role of the endoplasmic reticulum in cardiovascular disease shows how the change in function of a particular microscopic organelle can lead to macroscopic changes in the form of disease.
Collapse
Affiliation(s)
- Robyn Millott
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
14
|
Ross JL, Howlett SE. Age and ovariectomy abolish beneficial effects of female sex on rat ventricular myocytes exposed to simulated ischemia and reperfusion. PLoS One 2012; 7:e38425. [PMID: 22701638 PMCID: PMC3368849 DOI: 10.1371/journal.pone.0038425] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 05/09/2012] [Indexed: 12/24/2022] Open
Abstract
Sex differences in responses to myocardial ischemia have been described, but whether cardiomyocyte function is influenced by sex in the setting of ischemia and reperfusion has not been elucidated. This study compared contractions and intracellular Ca2+ in isolated ventricular myocytes exposed to ischemia and reperfusion. Cells were isolated from anesthetized 3-month-old male and female Fischer 344 rats, paced at 4 Hz (37°C), exposed to simulated ischemia (20 mins) and reperfused. Cell shortening (edge detector) and intracellular Ca2+ (fura-2) were measured simultaneously. Cell viability was assessed with Trypan blue. Ischemia reduced peak contractions and increased Ca2+ levels equally in myocytes from both sexes. However, contraction amplitudes were reduced in reperfusion in male myocytes, while contractions recovered to exceed control levels in females (62.6±5.1 vs. 140.1±15.8%; p<0.05). Only 60% of male myocytes excluded trypan blue dye after ischemia and reperfusion, while all female cardiomyocytes excluded the dye (p<0.05). Parallel experiments were conducted in myocytes from ∼24-month-old female rats or 5–6-month-old rats that had an ovariectomy at 3–4 weeks of age. Beneficial effects of female sex on myocyte viability and contractile dysfunction in reperfusion were abolished in cells from 24-month-old females. Aged female myocytes also exhibited elevated intracellular Ca2+ and alternans in ischemia. Cells from ovariectomized rats displayed increased Ca2+ transients and spontaneous activity in ischemia compared to sham-operated controls. None of the myocytes from ovariectomized rats were viable after 15 minutes of ischemia, while 75% of sham cells remained viable at end of reperfusion (p<0.05). These findings demonstrate that cardiomyocytes from young adult females are more resistant to ischemia and reperfusion injury than cells from males. Age and OVX abolish these beneficial effects and induce Ca2+ dysregulation at the level of the cardiomyocyte. Thus, beneficial effects of estrogen in ischemia and reperfusion are mediated, in part, by effects on cardiomyocytes.
Collapse
Affiliation(s)
- Jenna L. Ross
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Susan E. Howlett
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
- Division of Geriatric Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
- * E-mail:
| |
Collapse
|
15
|
Zhang Y, Ren J. RETRACTED: Thapsigargin triggers cardiac contractile dysfunction via NADPH oxidase-mediated mitochondrial dysfunction: Role of Akt dephosphorylation. Free Radic Biol Med 2011; 51:2172-2184. [PMID: 21996563 PMCID: PMC3224204 DOI: 10.1016/j.freeradbiomed.2011.09.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 09/01/2011] [Accepted: 09/02/2011] [Indexed: 02/09/2023]
Abstract
ER stress triggers myocardial contractile dysfunction although the underlying mechanism is still elusive. Given that NADPH oxidase was recently implicated in ER stress-induced tissue injury, this study was designed to examine the role of NADPH oxidase in ER stress-induced cardiac mechanical defects and the impact of Akt activation on ER stress-induced cardiac anomalies. Wild-type and transgenic mice with cardiac-specific overexpression of an active mutant of Akt (MyAkt) were subjected to the ER stress inducer thapsigargin (1 and 3mg/kg, ip, for 48h). Thapsigargin compromised echocardiographic parameters, including elevating LVESD and reducing fractional shortening; suppressed cardiomyocyte contractile function, intracellular Ca(2+) handling, and cell survival; and enhanced carbonyl formation, apoptosis, superoxide production, NADPH oxidase expression, and mitochondrial damage. Interestingly, these anomalies were attenuated or mitigated by chronic Akt activation. Treatment with thapsigargin also dephosphorylated Akt and its downstream signal GSK3β (leading to activation of GSK3β), the effect of which was abrogated in MyAkt hearts. Knockdown of the cytosolic subunit of NADPH oxidase, p47(phox), using siRNA abrogated thapsigargin-induced apoptosis and cell death in H9C2 myoblasts. In vitro exposure to thapsigargin induced murine cardiomyocyte dysfunction reminiscent of the in vivo setting, the effects of which were ablated by the NADPH oxidase inhibitor apocynin and the mitochondrial Ca(2+) uptake inhibitor Ru360. In addition, apocynin abrogated thapsigargin-induced loss of mitochondrial membrane potential and permeability transition pore opening, similar to chronic Akt activation. In summary, these data suggest that ER stress interrupts cardiac contractile and intracellular Ca(2+) homeostasis, cell survival, and mitochondrial integrity through an Akt dephosphorylation- and NADPH oxidase-dependent mechanism.
Collapse
Affiliation(s)
- Yingmei Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China; Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, WY 82071, USA
| | - Jun Ren
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China; Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, WY 82071, USA.
| |
Collapse
|