1
|
Mudigonda J, Xu D, Amedi A, Lane BA, Corporan D, Wang V, Padala M. A Biohybrid Material With Extracellular Matrix Core and Polymeric Coating as a Cell Honing Cardiovascular Tissue Substitute. Front Cardiovasc Med 2022; 9:807255. [PMID: 35402573 PMCID: PMC8987446 DOI: 10.3389/fcvm.2022.807255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/20/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveTo investigate the feasibility of a hybrid material in which decellularized pericardial extracellular matrix is functionalized with polymeric nanofibers, for use as a cardiovascular tissue substitute.BackgroundA cardiovascular tissue substitute, which is gradually resorbed and is replaced by host's native tissue, has several advantages. Especially in children and young adults, a resorbable material can be useful in accommodating growth, but also enable rapid endothelialization that is necessary to avoid thrombotic complications. In this study, we report a hybrid material, wherein decellularized pericardial matrix is functionalized with a layer of polymeric nanofibers, to achieve the mechanical strength for implantation in the cardiovascular system, but also have enhanced cell honing capacity.MethodsPericardial sacs were decellularized with sodium deoxycholate, and polycaprolactone-chitosan fibers were electrospun onto the matrix. Tissue-polymer interaction was evaluated using spectroscopic methods, and the mechanical properties of the individual components and the hybrid material were quantified. In-vitro blood flow loop studies were conducted to assess hemocompatibility and cell culture methods were used to assess biocompatibility.ResultsEncapsulation of the decellularized matrix with 70 μm thick matrix of polycaprolactone-chitosan nanofibers, was feasible and reproducible. Spectroscopy of the cross-section depicted new amide bond formation and C–O–C stretch at the interface. An average peel strength of 56.13 ± 11.87 mN/mm2 was measured, that is sufficient to withstand a high shear of 15 dynes/cm2 without delamination. Mechanical strength and extensibility ratio of the decellularized matrix alone were 18,000 ± 4,200 KPa and 0.18 ± 0.03% whereas that of the hybrid was higher at 20,000 ± 6,600 KPa and 0.35 ± 0.20%. Anisotropy index and stiffness of the biohybrid were increased as well. Neither thrombus formation, nor platelet adhesion or hemolysis was measured in the in-vitro blood flow loop studies. Cellular adhesion and survival were adequate in the material.ConclusionEncapsulating a decellularized matrix with a polymeric nanofiber coating, has favorable attributes for use as a cardiovascular tissue substitute.
Collapse
Affiliation(s)
- Jahnavi Mudigonda
- Structural Heart Research & Innovation Laboratory, Carlyle Fraser Heart Center, Emory University Hospital Midtown, Atlanta, GA, United States
- Division of Cardiothoracic Surgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Dongyang Xu
- Structural Heart Research & Innovation Laboratory, Carlyle Fraser Heart Center, Emory University Hospital Midtown, Atlanta, GA, United States
- Division of Cardiothoracic Surgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Alan Amedi
- Structural Heart Research & Innovation Laboratory, Carlyle Fraser Heart Center, Emory University Hospital Midtown, Atlanta, GA, United States
- Division of Cardiothoracic Surgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Brooks A. Lane
- Structural Heart Research & Innovation Laboratory, Carlyle Fraser Heart Center, Emory University Hospital Midtown, Atlanta, GA, United States
- Division of Cardiothoracic Surgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Daniella Corporan
- Structural Heart Research & Innovation Laboratory, Carlyle Fraser Heart Center, Emory University Hospital Midtown, Atlanta, GA, United States
- Division of Cardiothoracic Surgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Vivian Wang
- Structural Heart Research & Innovation Laboratory, Carlyle Fraser Heart Center, Emory University Hospital Midtown, Atlanta, GA, United States
| | - Muralidhar Padala
- Structural Heart Research & Innovation Laboratory, Carlyle Fraser Heart Center, Emory University Hospital Midtown, Atlanta, GA, United States
- Division of Cardiothoracic Surgery, Emory University School of Medicine, Atlanta, GA, United States
- *Correspondence: Muralidhar Padala
| |
Collapse
|
2
|
A multi-in-one strategy with glucose-triggered long-term antithrombogenicity and sequentially enhanced endothelialization for biological valve leaflets. Biomaterials 2021; 275:120981. [PMID: 34171754 DOI: 10.1016/j.biomaterials.2021.120981] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 06/03/2021] [Accepted: 06/17/2021] [Indexed: 12/16/2022]
Abstract
Bioprosthetic heart valves are commonly applied in heart valve replacement, while the effectiveness is limited by inflammation, calcification and especially thrombosis. Surface modification is expected to endow the biological valves with versatility. Herein, a multi-in-one strategy was established to modify biological valves with long-term antithrombogenicity and sequentially enhanced endothelialization triggered by glucose, in which the direct thrombin inhibitor rivaroxaban (RIVA)-loaded nanogels were embedded and the detachable polyethylene glycol (PEG) was grafted. These two anticoagulant strategies were connected by glucose oxidase (GOx), which catalyzed the oxidation of glucose to produce hydrogen peroxide (H2O2) and local acidic environment. The generated H2O2 stimulated H2O2-responsive nanogels release RIVA to obtain continuous antithrombogenicity. Meanwhile, PEG was attached to the surface via pH-sensitive bonds, which prevented thrombus formation by resisting the serum proteins and platelets adhesion at the initial stage of material/blood contact. Sequentially, PEG gradually peeled off under the local weak acidic environment, which ultimately resulted in the endothelialization enhancement. Within such multi-in-one strategy, the biological valve leaflets induced long-term anticoagulant performance, gradually enhanced endothelialization and improved tissue affinity, including anti-calcification and anti-inflammation, indicating the potential of the response sequence matching between materials and tissues after implantation, which might improve performance of biological heart valves.
Collapse
|
3
|
Lopera Higuita M, Griffiths LG. Antigen removal process preserves function of small diameter venous valved conduits, whereas SDS-decellularization results in significant valvular insufficiency. Acta Biomater 2020; 107:115-128. [PMID: 32151701 DOI: 10.1016/j.actbio.2020.03.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/28/2020] [Accepted: 03/03/2020] [Indexed: 12/18/2022]
Abstract
Chronic venous disease (CVD) is the most common reported chronic condition in the United States, affecting more than 25 million Americans. Regardless of its high occurrence, current therapeutic options are far from ideal due to their palliative nature. For best treatment outcomes, challenging cases of chronic venous insufficiency (CVI) are treated by repair or replacement of venous valves. Regrettably, the success of venous valve transplant is dependent on the availability of autologous venous valves and hindered by the possibility of donor site complications and increased patient morbidity. Therefore, the use of alternative tissue sources to provide off-the-shelf venous valve replacements has potential to be extremely beneficial to the field of CVI. This manuscript demonstrates the capability of producing off-the-shelf fully functional venous valved extracellular matrix (ECM) scaffold conduits from bovine saphenous vein (SV), using an antigen removal (AR) method. AR ECM scaffolds maintained native SV structure-function relationships and associated venous valves function. Conversely, SDS decellularization caused significant changes to the collagen and elastin macromolecular structures, resulting in collagen fibril merging, elimination of fibril crimp, amalgaming collagen fibers and fragmentation of the inner elastic lamina. ECM changes induced by SDS decellularization resulted in significant venous valve dysfunction. Venous valved conduits generated using the AR approach have potential to serve as off-the-shelf venous valve replacements for CVI. STATEMENT OF SIGNIFICANCE: Retention of the structure and composition of extracellular matrix (ECM) proteins within xenogeneic scaffolds for tissue engineering is of crucial importance, due to the undeniable effect ECM proteins can impose on repopulating cells and function of the resultant biomaterial. This manuscript demonstrates that alteration or elimination of ECM proteins via commonly utilized decellularization approach results in complete disruption of venous valve function. Conversely, retention of the delicate ECM structure and composition of native venous tissue, using an antigen removal tissue processing method, results in preservation of native venous valve function.
Collapse
|
4
|
Boll LFC, Rodrigues GO, Rodrigues CG, Bertollo FL, Irigoyen MC, Goldmeier S. Using a 3D printer in cardiac valve surgery: a systematic review. ACTA ACUST UNITED AC 2019; 65:818-824. [PMID: 31340310 DOI: 10.1590/1806-9282.65.6.818] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 02/10/2019] [Indexed: 01/15/2023]
Abstract
BACKGROUND The use of the 3D printer in complex cardiac surgery planning. OBJECTIVES To analyze the use and benefits of 3D printing in heart valve surgery through a systematic review of the literature. METHODS This systematic review was reported following the Preferred Reporting Items for Systematic Review and registered in the Prospero (International Prospective Register of Systematic Reviews) database under the number CRD42017059034. We used the following databases: PubMed, EMBASE, Scopus, Web of Science and Lilacs. We included articles about the keywords "Heart Valves", "Heart Valve Prosthesis Implantation", "Heart Valve Prosthesis", "Printing, Three-Dimensional", and related entry terms. Two reviewers independently conducted data extraction and a third reviewer solved disagreements. All tables used for data extraction are available at a separate website. We used the Cochrane Collaboration tool to assess the risk of bias of the studies included. RESULTS We identified 301 articles and 13 case reports and case series that met the inclusion criteria. Our studies included 34 patients aged from 3 months to 94 years. CONCLUSIONS Up to the present time, there are no studies including a considerable number of patients. A 3D-printed model produced based on the patient enables the surgeon to plan the surgical procedure and choose the best material, size, format, and thickness to be used. This planning leads to reduced surgery time, exposure, and consequently, lower risk of infection.
Collapse
Affiliation(s)
| | | | - Clarissa Garcia Rodrigues
- Institute of Cardiology / University Foundation of Cardiology; Av. Princesa Isabel, 370 - Porto Alegre, RS, Brasil
| | - Felipe Luiz Bertollo
- Institute of Cardiology / University Foundation of Cardiology; Av. Princesa Isabel, 370 - Porto Alegre, RS, Brasil
| | | | - Silvia Goldmeier
- Institute of Cardiology / University Foundation of Cardiology; Av. Princesa Isabel, 370 - Porto Alegre, RS, Brasil
| |
Collapse
|
5
|
Zhang BL, Bianco RW, Schoen FJ. Preclinical Assessment of Cardiac Valve Substitutes: Current Status and Considerations for Engineered Tissue Heart Valves. Front Cardiovasc Med 2019; 6:72. [PMID: 31231661 PMCID: PMC6566127 DOI: 10.3389/fcvm.2019.00072] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 05/13/2019] [Indexed: 12/14/2022] Open
Abstract
Tissue engineered heart valve (TEHV) technology may overcome deficiencies of existing available heart valve substitutes. The pathway by which TEHVs will undergo development and regulatory approval has several challenges. In this communication, we review: (1) the regulatory framework for regulation of medical devices in general and substitute heart valves in particular; (2) the special challenges of preclinical testing using animal models for TEHV, emphasizing the International Standards Organization (ISO) guidelines in document 5840; and (3) considerations that suggest a translational roadmap to move TEHV forward from pre-clinical to clinical studies and clinical implementation.
Collapse
Affiliation(s)
- Benjamin L Zhang
- Department of Surgery, University of Minnesota, Minneapolis, MN, United States
| | - Richard W Bianco
- Department of Surgery, University of Minnesota, Minneapolis, MN, United States
| | - Frederick J Schoen
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
6
|
Bonetti A, Marchini M, Ortolani F. Ectopic mineralization in heart valves: new insights from in vivo and in vitro procalcific models and promising perspectives on noncalcifiable bioengineered valves. J Thorac Dis 2019; 11:2126-2143. [PMID: 31285908 DOI: 10.21037/jtd.2019.04.78] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Ectopic calcification of native and bioprosthetic heart valves represents a major public health problem causing severe morbidity and mortality worldwide. Valve procalcific degeneration is known to be caused mainly by calcium salt precipitation onto membranes of suffering non-scavenged cells and dead-cell-derived products acting as major hydroxyapatite nucleators. Although etiopathogenesis of calcification in native valves is still far from being exhaustively elucidated, it is well known that bioprosthesis mineralization may be primed by glutaraldehyde-mediated toxicity for xenografts, cryopreservation-related damage for allografts and graft immune rejection for both. Instead, mechanical valves, which are free from calcification, are extremely thrombogenic, requiring chronic anticoagulation therapies for transplanted patients. Since surgical substitution of failed valves is still the leading therapeutic option, progressive improvements in tissue engineering techniques are crucial to attain readily available valve implants with good biocompatibility, proper functionality and long-term durability in order to meet the considerable clinical demand for valve substitutes. Bioengineered valves obtained from acellular non-valvular scaffolds or decellularized native valves are proving to be a compelling alternative to mechanical and bioprosthetic valve implants, as they appear to permit repopulation by the host's own cells with associated tissue remodelling, growth and repair, besides showing less propensity to calcification and adequate hemodynamic performances. In this review, insights into valve calcification onset as revealed by in vivo and in vitro procalcific models are updated as well as advances in the field of valve bioengineering.
Collapse
|
7
|
Li KYC. Bioprosthetic Heart Valves: Upgrading a 50-Year Old Technology. Front Cardiovasc Med 2019; 6:47. [PMID: 31032263 PMCID: PMC6470412 DOI: 10.3389/fcvm.2019.00047] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 03/26/2019] [Indexed: 01/09/2023] Open
Abstract
Prosthetic heart valves have been commonly used to address the increasing prevalence of valvular heart disease. The ideal prosthetic heart valve substitute should closely mimic the characteristics of a normal native heart valve. Despite the development of various interventions, an exemplary valve replacement does not exist. This review provides an overview of the novel engineering valve designs and explores emergent immunologic insights into age-dependent structural valve degeneration (SVD).
Collapse
Affiliation(s)
- Kan Yan Chloe Li
- Institute of Cardiovascular Science, University College London, London, United Kingdom
| |
Collapse
|
8
|
Many Cells Make Life Work-Multicellularity in Stem Cell-Based Cardiac Disease Modelling. Int J Mol Sci 2018; 19:ijms19113361. [PMID: 30373227 PMCID: PMC6274721 DOI: 10.3390/ijms19113361] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/23/2018] [Accepted: 10/24/2018] [Indexed: 12/22/2022] Open
Abstract
Cardiac disease causes 33% of deaths worldwide but our knowledge of disease progression is still very limited. In vitro models utilising and combining multiple, differentiated cell types have been used to recapitulate the range of myocardial microenvironments in an effort to delineate the mechanical, humoral, and electrical interactions that modulate the cardiac contractile function in health and the pathogenesis of human disease. However, due to limitations in isolating these cell types and changes in their structure and function in vitro, the field is now focused on the development and use of stem cell-derived cell types, most notably, human-induced pluripotent stem cell-derived CMs (hiPSC-CMs), in modelling the CM function in health and patient-specific diseases, allowing us to build on the findings from studies using animal and adult human CMs. It is becoming increasingly appreciated that communications between cardiomyocytes (CMs), the contractile cell of the heart, and the non-myocyte components of the heart not only regulate cardiac development and maintenance of health and adult CM functions, including the contractile state, but they also regulate remodelling in diseases, which may cause the chronic impairment of the contractile function of the myocardium, ultimately leading to heart failure. Within the myocardium, each CM is surrounded by an intricate network of cell types including endothelial cells, fibroblasts, vascular smooth muscle cells, sympathetic neurons, and resident macrophages, and the extracellular matrix (ECM), forming complex interactions, and models utilizing hiPSC-derived cell types offer a great opportunity to investigate these interactions further. In this review, we outline the historical and current state of disease modelling, focusing on the major milestones in the development of stem cell-derived cell types, and how this technology has contributed to our knowledge about the interactions between CMs and key non-myocyte components of the heart in health and disease, in particular, heart failure. Understanding where we stand in the field will be critical for stem cell-based applications, including the modelling of diseases that have complex multicellular dysfunctions.
Collapse
|
9
|
Rambøl MH, Hisdal J, Sundhagen JO, Brinchmann JE, Rosales A. Recellularization of Decellularized Venous Grafts Using Peripheral Blood: A Critical Evaluation. EBioMedicine 2018; 32:215-222. [PMID: 29779699 PMCID: PMC6020714 DOI: 10.1016/j.ebiom.2018.05.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/29/2018] [Accepted: 05/08/2018] [Indexed: 01/08/2023] Open
Abstract
Vascular disease is a major cause of death worldwide, and the growing need for replacement vessels is not fully met by autologous grafts or completely synthetic alternatives. Tissue engineering has emerged as a compelling strategy for the creation of blood vessels for reconstructive surgeries. One promising method to obtain a suitable vessel scaffold is decellularization of donor vascular tissue followed by recellularization with autologous cells. To prevent thrombosis of vascular grafts, a confluent and functional autologous endothelium is required, and researchers are still looking for the optimal cell source and recellularization procedure. Recellularization of a decellularized scaffold with only a small volume of whole blood was recently put forward as a feasible option. Here we show that, in contrast to the published results, this method fails to re-endothelialize decellularized veins. Only occasional nucleated cells were seen on the luminal surface of the scaffolds. Instead, we saw fibrin threads, platelets and scattered erythrocytes. Molecular remnants of the endothelial cells were still attached to the scaffold, which explains in part why earlier results were misinterpreted. Decellularized vascular tissues may still be the best scaffolds available for vascular tissue engineering. However, for the establishment of an adequate autologous endothelial lining, methods other than exposure to autologous whole blood need to be developed.
Collapse
Affiliation(s)
- Mia H Rambøl
- Norwegian center for stem cell research, Department of immunology, Oslo university hospital, Oslo, Norway; Oslo vascular center, Department of vascular surgery, Oslo university hospital, Oslo, Norway.
| | - Jonny Hisdal
- Oslo vascular center, Department of vascular surgery, Oslo university hospital, Oslo, Norway
| | - Jon O Sundhagen
- Oslo vascular center, Department of vascular surgery, Oslo university hospital, Oslo, Norway
| | - Jan E Brinchmann
- Norwegian center for stem cell research, Department of immunology, Oslo university hospital, Oslo, Norway; Department of molecular medicine, University of Oslo, Oslo, Norway
| | - Antonio Rosales
- Oslo vascular center, Department of vascular surgery, Oslo university hospital, Oslo, Norway
| |
Collapse
|
10
|
Slamecka J, McClellan S, Wilk A, Laurini J, Manci E, Hoerstrup SP, Weber B, Owen L. Induced pluripotent stem cells derived from human amnion in chemically defined conditions. Cell Cycle 2018; 17:330-347. [PMID: 29143560 DOI: 10.1080/15384101.2017.1403690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Fetal stem cells are a unique type of adult stem cells that have been suggested to be broadly multipotent with some features of pluripotency. Their clinical potential has been documented but their upgrade to full pluripotency could open up a wide range of cell-based therapies particularly suited for pediatric tissue engineering, longitudinal studies or disease modeling. Here we describe episomal reprogramming of mesenchymal stem cells from the human amnion to pluripotency (AM-iPSC) in chemically defined conditions. The AM-iPSC expressed markers of embryonic stem cells, readily formed teratomas with tissues of all three germ layers present and had a normal karyotype after around 40 passages in culture. We employed novel computational methods to determine the degree of pluripotency from microarray and RNA sequencing data in these novel lines alongside an iPSC and ESC control and found that all lines were deemed pluripotent, however, with variable scores. Differential expression analysis then identified several groups of genes that potentially regulate this variability in lines within the boundaries of pluripotency, including metallothionein proteins. By further studying this variability, characteristics relevant to cell-based therapies, like differentiation propensity, could be uncovered and predicted in the pluripotent stage.
Collapse
Affiliation(s)
| | | | - Anna Wilk
- a Mitchell Cancer Institute, University of South Alabama , USA
| | - Javier Laurini
- c College of Medicine, University of South Alabama , Mobile , AL , USA
| | - Elizabeth Manci
- d College of Medicine, University of South Alabama , Mobile , AL , USA
| | - Simon P Hoerstrup
- b Institute for Regenerative Medicine, University of Zurich , Switzerland.,f Center for Applied Biotechnology and Molecular Medicine (CABMM) , University of Zurich - Irchel Campus , Zurich , Switzerland
| | - Benedikt Weber
- b Institute for Regenerative Medicine, University of Zurich , Switzerland.,e Department of Dermatology , University Hospital Zurich , Switzerland.,f Center for Applied Biotechnology and Molecular Medicine (CABMM) , University of Zurich - Irchel Campus , Zurich , Switzerland
| | - Laurie Owen
- g University of California San Diego , La Jolla , CA , USA
| |
Collapse
|
11
|
Fabrication of Hydrogel Materials for Biomedical Applications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1077:197-224. [PMID: 30357691 DOI: 10.1007/978-981-13-0947-2_12] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Hydrogels are three-dimensional hydrophilic polymeric networks that can be made from a wide range of natural and synthetic polymers. This review discusses recent advanced engineering methods to fabricate hydrogels for biomedical applications with emphasis in cardiac constructs and wound healing. Layer-by-Layer (LbL) assembly offers a tissue-engineered construct with robust and highly ordered structures for cell proliferation and differentiation. Three-dimensional printings, including inkjet printing, fused deposition modeling, and stereolithographic apparatus, have been widely employed to fabricate complex structures (e.g., heart valves). Moreover, the state-of-the-art design of intelligent/stimulus-responsive hydrogels can be used for a wide range of biomedical applications, including drug delivery, glucose delivery, shape memory, wound dressings, and so on. In the future, an increasing number of hydrogels with tunable mechanical properties and versatile functions will be developed for biomedical applications by employing advanced engineering techniques with novel material design.
Collapse
|
12
|
Slamecka J, Laurini J, Shirley T, Hoerstrup SP, Weber B, Owen L, McClellan S. Reprogramming Primary Amniotic Fluid and Membrane Cells to Pluripotency in Xeno-free Conditions. J Vis Exp 2017. [PMID: 29286443 DOI: 10.3791/56003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Autologous cell-based therapies got a step closer to reality with the introduction of induced pluripotent stem cells. Fetal stem cells, such as amniotic fluid and membrane mesenchymal stem cells, represent a unique type of undifferentiated cells with promise in tissue engineering and for reprogramming into iPSC for future pediatric interventions and stem cell banking. The protocol presented here describes an optimized procedure for extracting and culturing primary amniotic fluid and membrane mesenchymal stem cells and generating episomal induced pluripotent stem cells from these cells in fully chemically defined culture conditions utilizing human recombinant vitronectin and the E8 medium. Characterization of the new lines by applying stringent methods - flow cytometry, confocal imaging, teratoma formation and transcriptional profiling - is also described. The newly generated lines express markers of embryonic stem cells - Oct3/4A, Nanog, Sox2, TRA-1-60, TRA-1-81, SSEA-4 - while being negative for the SSEA-1 marker. The stem cell lines form teratomas in scid-beige mice in 6-8 weeks and the teratomas contain tissues representative of all three germ layers. Transcriptional profiling of the lines by submitting global expression microarray data to a bioinformatic pluripotency assessment algorithm deemed all lines pluripotent and therefore, this approach is an attractive alternative to animal testing. The new iPSC lines can readily be used in downstream experiments involving the optimization of differentiation and tissue engineering.
Collapse
Affiliation(s)
| | | | - Troy Shirley
- Mitchell Cancer Institute, University of South Alabama
| | | | - Benedikt Weber
- Institute for Regenerative Medicine, University of Zurich; Department of Dermatology, University Hospital Zurich; Center for Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich - Irchel Campus
| | - Laurie Owen
- Mitchell Cancer Institute, University of South Alabama
| | | |
Collapse
|
13
|
Stassen OMJA, Muylaert DEP, Bouten CVC, Hjortnaes J. Current Challenges in Translating Tissue-Engineered Heart Valves. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2017; 19:71. [PMID: 28782083 PMCID: PMC5545463 DOI: 10.1007/s11936-017-0566-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Heart valve disease is a major health burden, treated by either valve repair or valve replacement, depending on the affected valve. Nearly 300,000 valve replacements are performed worldwide per year. Valve replacement is lifesaving, but not without complications. The in situ tissue-engineered heart valve is a promising alternative to current treatments, but the translation of this novel technology to the clinic still faces several challenges. These challenges originate from the variety encountered in the patient population, the conversion of an implant into a living tissue, the highly mechanical nature of the heart valve, the complex homeostatic tissue that has to be reached at the end stage of the regenerating heart valve, and all the biomaterial properties that can be controlled to obtain this tissue. Many of these challenges are multidimensional and multiscalar, and both the macroscopic properties of the complete heart valve and the microscopic properties of the patient’s cells interacting with the materials have to be optimal. Using newly developed in vitro models, or bioreactors, where variables of interest can be controlled tightly and complex mixtures of cell populations similar to those encountered in the regenerating valve can be cultured, it is likely that the challenges can be overcome.
Collapse
Affiliation(s)
- O M J A Stassen
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands.
| | - D E P Muylaert
- Department of Cardiothoracic Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - C V C Bouten
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - J Hjortnaes
- Department of Cardiothoracic Surgery, University Medical Center Utrecht, Utrecht, The Netherlands.,Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
14
|
|
15
|
Natural Scaffolds for Regenerative Medicine: Direct Determination of Detergents Entrapped in Decellularized Heart Valves. BIOMED RESEARCH INTERNATIONAL 2017; 2017:9274135. [PMID: 28676861 PMCID: PMC5476881 DOI: 10.1155/2017/9274135] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 03/31/2017] [Accepted: 05/02/2017] [Indexed: 12/19/2022]
Abstract
The increasing urgency for replacement of pathological heart valves is a major stimulus for research on alternatives to glutaraldehyde-treated grafts. New xenogeneic acellular heart valve substitutes that can be repopulated by host cells are currently under investigation. Anionic surfactants, including bile acids, have been widely used to eliminate the resident cell components chiefly responsible for the immunogenicity of the tissue, even if detergent toxicity might present limitations to the survival and/or functional expression of the repopulating cells. To date, the determination of residual detergent has been carried out almost exclusively on the washings following cell removal procedures. Here, a novel HPLC-based procedure is proposed for the direct quantification of detergent (cholate, deoxycholate, and taurodeoxycholate) residues entrapped in the scaffold of decellularized porcine aortic and pulmonary valves. The method was demonstrated to be sensitive, reproducible, and extendable to different types of detergent. This assessment also revealed that cell-depleted heart valve scaffolds prepared according to procedures currently considered for clinical use might contain significant amount of surfactant.
Collapse
|
16
|
Hellström M, Bandstein S, Brännström M. Uterine Tissue Engineering and the Future of Uterus Transplantation. Ann Biomed Eng 2016; 45:1718-1730. [PMID: 27995397 PMCID: PMC5489617 DOI: 10.1007/s10439-016-1776-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 12/07/2016] [Indexed: 12/11/2022]
Abstract
The recent successful births following live donor uterus transplantation are proof-of-concept that absolute uterine factor infertility is a treatable condition which affects several hundred thousand infertile women world-wide due to a dysfunctional uterus. This strategy also provides an alternative to gestational surrogate motherhood which is not practiced in most countries due to ethical, religious or legal reasons. The live donor surgery involved in uterus transplantation takes more than 10 h and is then followed by years of immunosuppressive medication to prevent uterine rejection. Immunosuppression is associated with significant adverse side effects, including nephrotoxicity, increased risk of serious infections, and diabetes. Thus, the development of alternative approaches to treat absolute uterine factor infertility would be desirable. This review discusses tissue engineering principles in general, but also details strategies on how to create a bioengineered uterus that could be used for transplantation, without risky donor surgery and any need for immunosuppression. We discuss scaffolds derived from decellularized organs/tissues which may be recellularized using various types of autologous somatic/stem cells, in particular for uterine tissue engineering. It further highlights the hurdles that lay ahead in developing an alternative to an allogeneic source for uterus transplantation.
Collapse
Affiliation(s)
- Mats Hellström
- Laboratory for Transplantation and Regenerative Medicine, Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden. .,, Kvinnokliniken, Blå stråket 6, 413 45, Göteborg, Sweden.
| | - Sara Bandstein
- Laboratory for Transplantation and Regenerative Medicine, Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,, Kvinnokliniken, Blå stråket 6, 413 45, Göteborg, Sweden
| | - Mats Brännström
- Laboratory for Transplantation and Regenerative Medicine, Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,, Kvinnokliniken, Blå stråket 6, 413 45, Göteborg, Sweden
| |
Collapse
|
17
|
Williams JK, Andersson KE. Regenerative pharmacology: recent developments and future perspectives. Regen Med 2016; 11:859-870. [DOI: 10.2217/rme-2016-0108] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
This review focuses on the current status of research that utilizes the application of pharmacological sciences to accelerate, optimize and characterize the development, maturation and function of bioengineered and regenerating tissues. These regenerative pharmacologic approaches have been applied to diseases of the urogenital tract, the heart, the brain, the musculoskeletal system and diabetes. Approaches have included the use of growth factors (such as VEGF and chemokines (stromal-derived factor – CXCL12) to mobilize cell to the sights of tissue loss or damage. The promise of this approach is to bypass the lengthy and expensive processes of cell isolation and implant fabrication to stimulate the body to heal itself with its own tissue regenerative pathways.
Collapse
Affiliation(s)
- James Koudy Williams
- Wake Forest Institute for Regenerative Medicine, Wake Forest Baptist Medical Center, Winston-Salem, NC 27101, USA
| | - Karl-Erik Andersson
- Wake Forest Institute for Regenerative Medicine, Wake Forest Baptist Medical Center, Winston-Salem, NC 27101, USA
- Institute for Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
18
|
Frey BM, Zeisberger SM, Hoerstrup SP. Tissue Engineering and Regenerative Medicine - New Initiatives for Individual Treatment Offers. Transfus Med Hemother 2016; 43:318-319. [PMID: 27781018 DOI: 10.1159/000450716] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 09/12/2016] [Indexed: 12/18/2022] Open
Affiliation(s)
- Beat M Frey
- Blood Transfusion Service Zurich, Zurich-Schlieren, Switzerland
| | - Steffen M Zeisberger
- Wyss Translational Center Zurich, Regenerative Medicine Technologies Platform, University of Zurich and ETH Zurich; Zurich, Switzerland
| | - Simon P Hoerstrup
- Wyss Translational Center Zurich, Regenerative Medicine Technologies Platform, University of Zurich and ETH Zurich; Zurich, Switzerland; Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| |
Collapse
|
19
|
Hasan A, Saliba J, Pezeshgi Modarres H, Bakhaty A, Nasajpour A, Mofrad MRK, Sanati-Nezhad A. Micro and nanotechnologies in heart valve tissue engineering. Biomaterials 2016; 103:278-292. [PMID: 27414719 DOI: 10.1016/j.biomaterials.2016.07.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/26/2016] [Accepted: 07/01/2016] [Indexed: 02/04/2023]
Abstract
Due to the increased morbidity and mortality resulting from heart valve diseases, there is a growing demand for off-the-shelf implantable tissue engineered heart valves (TEHVs). Despite the significant progress in recent years in improving the design and performance of TEHV constructs, viable and functional human implantable TEHV constructs have remained elusive. The recent advances in micro and nanoscale technologies including the microfabrication, nano-microfiber based scaffolds preparation, 3D cell encapsulated hydrogels preparation, microfluidic, micro-bioreactors, nano-microscale biosensors as well as the computational methods and models for simulation of biological tissues have increased the potential for realizing viable, functional and implantable TEHV constructs. In this review, we aim to present an overview of the importance and recent advances in micro and nano-scale technologies for the development of TEHV constructs.
Collapse
Affiliation(s)
- Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar; Department of Mechanical Engineering, Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon; Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA.
| | - John Saliba
- Department of Mechanical Engineering, Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Hassan Pezeshgi Modarres
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Canada; Center for BioEngineering Research and Education, University of Calgary, Calgary, Canada; Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California Berkeley, 208A Stanley Hall, Berkeley, CA 94720-1762, USA
| | - Ahmed Bakhaty
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California Berkeley, 208A Stanley Hall, Berkeley, CA 94720-1762, USA
| | - Amir Nasajpour
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Mohammad R K Mofrad
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California Berkeley, 208A Stanley Hall, Berkeley, CA 94720-1762, USA; Physical Biosciences Division, Lawrence Berkeley National Lab, Berkeley, CA 94720, USA
| | - Amir Sanati-Nezhad
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Canada; Center for BioEngineering Research and Education, University of Calgary, Calgary, Canada.
| |
Collapse
|