1
|
Anwer MS, El-Sayed WM. Exploring Tephrosin: A review of its potential in cancer therapy and multifaceted anticancer mechanisms. SOUTH AFRICAN JOURNAL OF BOTANY 2025; 177:320-328. [DOI: 10.1016/j.sajb.2024.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
2
|
Reuter MM, Lev KL, Albo J, Arora HS, Liu N, Tan S, Shay MR, Sarkar D, Robida A, Sherman DH, Richardson RJ, Cira NJ, Chandrasekaran S. Ultra-high-throughput screening of antimicrobial combination therapies using a two-stage transparent machine learning model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.25.625231. [PMID: 39651242 PMCID: PMC11623614 DOI: 10.1101/2024.11.25.625231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Here, we present M2D2, a two-stage machine learning (ML) pipeline that identifies promising antimicrobial drug combinations, which are crucial for combating drug resistance. M2D2 addresses key challenges in drug combination discovery by predicting drug synergies using computationally generated drug-protein interaction data, thereby circumventing the need for expensive omics data. The model improves the accuracy of drug target identification using high-throughput experimental and computational methods via feedback between ML stages. M2D2's transparent framework provides mechanistic insights into drug interactions and was benchmarked against chemogenomics, transcriptomics, and metabolomics datasets. We experimentally validated M2D2 using high-throughput screening of 946 combinations of Food and Drug Administration (FDA)- approved drugs and antibiotics against Escherichia coli . We discovered synergy between a cerebrovascular drug and a widely used penicillin antibiotic and validated predicted mechanisms of action using genome-wide CRISPR inhibition screens. M2D2 offers a transparent ML tool for rapidly designing combination therapies and guides repurposing efforts while providing mechanistic insights.
Collapse
|
3
|
Verma A, Rai N, Gupta P, Singh S, Tiwari H, Chauhan SB, Kailashiya V, Gautam V. Exploration of in vitro cytotoxic and in ovo antiangiogenic activity of ethyl acetate extract of Penicillium oxalicum. ENVIRONMENTAL TOXICOLOGY 2023; 38:2509-2523. [PMID: 37461856 DOI: 10.1002/tox.23889] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/27/2023] [Accepted: 06/29/2023] [Indexed: 09/19/2023]
Abstract
Fungal endophytes have established new paradigms in the area of biomedicine due to their ability to produce metabolites of pharmacological importance. The present study reports the in vitro cytotoxic and in ovo antiangiogenic activity of the ethyl acetate (EA) extract of Penicillium oxalicum and their chemical profiling through Gas Chromatography-Mass Spectrometry analysis. Treatment of the EA extract of P. oxalicum to the selected human breast cancer cell lines (MDA-MB-231 and MCF-7) leads to the reduced glucose uptake and increased nitric oxide production suggesting the cytotoxic activity of EA extract of P. oxalicum. Our results further show that treatment of EA extract of P. oxalicum attenuates the colony number, cell migration ability and alters nuclear morphology in both the human breast cancer cell lines. Furthermore, the treatment of EA extract of P. oxalicum mediates apoptosis by increasing the expression of BAX, P21, FADD, and CASPASE-8 genes, with increased Caspase-3 activity. Additionally, in ovo chorioallantoic membrane (CAM) assay showed that the treatment of EA extract of P. oxalicum leads to antiangiogenic activity with perturbed formation of blood vessels. Overall, our findings suggest that the EA extract of P. oxalicum show in vitro cytotoxic and antiproliferative activity against human breast cancer cell lines, and in ovo antiangiogenic activity in CAM model.
Collapse
Affiliation(s)
- Ashish Verma
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Nilesh Rai
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Priyamvada Gupta
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Swati Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Harshita Tiwari
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Shashi Bhushan Chauhan
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Vikas Kailashiya
- Department of Pathology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Vibhav Gautam
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
4
|
Jakobušić Brala C, Karković Marković A, Kugić A, Torić J, Barbarić M. Combination Chemotherapy with Selected Polyphenols in Preclinical and Clinical Studies-An Update Overview. Molecules 2023; 28:molecules28093746. [PMID: 37175156 PMCID: PMC10180288 DOI: 10.3390/molecules28093746] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
This review article describes studies published over the past five years on the combination of polyphenols, which are the most studied in the field of anticancer effects (curcumin, quercetin, resveratrol, epigallocatechin gallate, and apigenin) and chemotherapeutics such as cisplatin, 5-fluorouracil, oxaliplatin, paclitaxel, etc. According to WHO data, research has been limited to five cancers with the highest morbidity rate (lung, colorectal, liver, gastric, and breast cancer). A systematic review of articles published in the past five years (from January 2018 to January 2023) was carried out with the help of all Web of Science databases and the available base of clinical studies. Based on the preclinical studies presented in this review, polyphenols can enhance drug efficacy and reduce chemoresistance through different molecular mechanisms. Considering the large number of studies, curcumin could be a molecule in future chemotherapy cocktails. One of the main problems in clinical research is related to the limited bioavailability of most polyphenols. The design of a new co-delivery system for drugs and polyphenols is essential for future clinical research. Some polyphenols work in synergy with chemotherapeutic drugs, but some polyphenols can act antagonistically, so caution is always required.
Collapse
Affiliation(s)
- Cvijeta Jakobušić Brala
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10 000 Zagreb, Croatia
| | - Ana Karković Marković
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10 000 Zagreb, Croatia
| | - Azra Kugić
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10 000 Zagreb, Croatia
| | - Jelena Torić
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10 000 Zagreb, Croatia
| | - Monika Barbarić
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10 000 Zagreb, Croatia
| |
Collapse
|
5
|
Dong H, Qi Y, Kong X, Wang Z, Fang Y, Wang J. PD-1/PD-L1 Inhibitor-Associated Myocarditis: Epidemiology, Characteristics, Diagnosis, Treatment, and Potential Mechanism. Front Pharmacol 2022; 13:835510. [PMID: 35517794 PMCID: PMC9062035 DOI: 10.3389/fphar.2022.835510] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/14/2022] [Indexed: 12/19/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) induce T-cell activation against cancer cells, and due to their anti-tumor function in multiple cancers, ICIs have been considered an important option for oncotherapy. PD-1/PD-L1 inhibitors are now widely used as ICIs for many types of cancers in clinical practices. Myocarditis induced by anti-PD-1/PD-L1 agents is uncommon but shows potentially fatal toxicity. In this review, we attempted to conclude the incidence, characteristics, diagnosis, and treatments, as well as illustrate the potential pathogenesis from the perspectives of T-lymphocyte infiltration, disturbance of regulatory T cells, cytokines, macrophage-mediated inflammatory response, and synergistic effect of PD-1/PD-L1 and CTLA4.
Collapse
Affiliation(s)
- Hao Dong
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yihang Qi
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiangyi Kong
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhongzhao Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yi Fang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jing Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| |
Collapse
|
6
|
Overexpression of Programmed Cell Death 1 Prevents Doxorubicin-Induced Apoptosis Through Autophagy Induction in H9c2 Cardiomyocytes. Cardiovasc Toxicol 2022; 22:462-476. [PMID: 35190965 PMCID: PMC8993749 DOI: 10.1007/s12012-022-09726-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/02/2022] [Indexed: 12/11/2022]
Abstract
Doxorubicin (DOX) is a potent chemotherapeutic agent; however, it causes severe heart injury via apoptosis induction in many patients. DOX-induced cardiotoxicity is attenuated by activated autophagy in the heart. We previously found that programmed cell death 1 (Pdcd1), an immune checkpoint receptor, inhibits DOX-induced cardiomyocyte apoptosis. In this study, we investigated whether autophagy contributes to the protective role of Pdcd1 against DOX-induced cardiomyocyte apoptosis. We also examined the role of Pdcd1 in DOX-induced apoptosis in cancer cells. Rat cardiomyocyte cell line H9c2 and human cancer cell lines K562 and MCF-7 were transfected with Pdcd1-encoding plasmid DNA to establish Pdcd1-overexpressing cells. Apoptosis and autophagy were determined using a luciferase assay. In H9c2 cells, DOX-induced apoptosis and viability reduction occurred through caspase activation. In particular, Pdcd1 overexpression activated the autophagy pathway through the inhibition of the mammalian target of rapamycin, a major negative regulator of autophagy. Moreover, it prevented DOX-induced cardiomyocyte apoptosis; a similar cardioprotection was observed when normal H9c2 cells (without Pdcd1 overexpression) were treated with rapamycin, an autophagy inducer, before the DOX treatment. Conversely, in cancer cells, Pdcd1 overexpression increased both basal and DOX-induced apoptosis. The role of Pdcd1 in DOX-induced apoptosis in cardiomyocytes and cancer cells was opposing. Pdcd1 signaling prevented DOX-induced apoptosis in cardiomyocytes, through autophagy induction; it enhanced DOX-induced apoptosis in cancer cells. Therefore, Pdcd1 could be a critical molecule for more effective and safer DOX chemotherapy.
Collapse
|
7
|
Buja LM, Zhao B, Segura A, Lelenwa L, McDonald M, Michaud K. Cardiovascular pathology: guide to practice and training. Cardiovasc Pathol 2022. [DOI: 10.1016/b978-0-12-822224-9.00001-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
8
|
Hitawala G, Jain E, Castellanos L, Garimella R, Akku R, Chamavaliyathil AK, Irfan H, Jaiswal V, Quinonez J, Dakroub M, Hanif M, Baloch AH, Gomez IS, Dylewski J. Pediatric Chemotherapy Drugs Associated With Cardiotoxicity. Cureus 2021; 13:e19658. [PMID: 34976454 PMCID: PMC8679581 DOI: 10.7759/cureus.19658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2021] [Indexed: 11/05/2022] Open
Abstract
Pediatric cancers are a common cause of childhood morbidity. As a result, chemotherapeutic regimens have been designed to target childhood cancers. These medications are necessary to treat pediatric cancers, however, oncology management options are accompanied by multiple negative and potentially fatal adverse effects. Although anthracyclines are the most commonly used chemotherapeutic agents associated with cardiotoxicity, we also explore other chemotherapeutic drugs used in children that can potentially affect the heart. Genetic variations resulting in single nucleotide polymorphism (SNP) have the propensity to modify the cardiotoxic effects of the chemotherapy drugs. The clinical presentation of the cardiac effects can vary from arrhythmias and heart failure to completely asymptomatic. A range of imaging studies and laboratory investigations can protect the heart from severe outcomes. The physiology of the heart and the effect of drugs in children vary vividly from adults; therefore, it is crucial to study the cardiotoxic effect of chemotherapy drugs in the pediatric population. This review highlights the potential contributing factors for cardiotoxicity in the pediatric population and discusses the identification and management options.
Collapse
Affiliation(s)
- Gazala Hitawala
- Internal Medicine, Jersey City (JC) Medical Center, Orlando, USA
| | - Esha Jain
- Medicine, American University of Antigua, St. John's, ATG
| | | | | | - Radhika Akku
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Adila K Chamavaliyathil
- Pediatrics, Ras Al Khaimah (RAK) Medical and Health Sciences University, Ras Al Khaimah, ARE
| | - Huma Irfan
- Research, Larkin Community Hospital, South Miami, USA
| | | | - Jonathan Quinonez
- Neurology/Osteopathic Neuromuscular Medicine, Larkin Community Hospital, Miami, USA
| | - Maher Dakroub
- Hematology and Oncology, Larkin Community Hospital, South Miami, USA
| | - Muhammad Hanif
- Internal Medicine, Khyber Medical College Peshawar, Hayatabad Medical Complex, Peshawar, PAK
| | - Ali H Baloch
- Research, University of Maryland Medical Center, Baltimore, USA
| | - Ivan S Gomez
- Cardiology, Larkin Community Hospital, South Miami, USA
| | - John Dylewski
- Cardiology, Larkin Community Hospital, South Miami, USA
| |
Collapse
|
9
|
Palaskas NL, Segura A, Lelenwa L, Siddiqui BA, Subudhi SK, Lopez-Mattei J, Durand JB, Deswal A, Zhao B, Maximilian Buja L, Iliescu C. Immune checkpoint inhibitor myocarditis: elucidating the spectrum of disease through endomyocardial biopsy. Eur J Heart Fail 2021; 23:1725-1735. [PMID: 34114291 DOI: 10.1002/ejhf.2265] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 05/17/2021] [Accepted: 06/04/2021] [Indexed: 12/11/2022] Open
Abstract
AIMS Although immune checkpoint inhibitor (ICI) myocarditis carries a high reported mortality, increasing reports of smoldering myocarditis suggest a clinical spectrum of disease. Endomyocardial biopsy (EMB) remains the gold standard for diagnosis of ICI myocarditis, but different pathologic diagnostic criteria exist. The objective of this study was to classify the spectrum of ICI myocarditis and myocardial inflammation by pathology findings on EMB and correlate this with clinical outcomes. METHODS AND RESULTS All patients who had EMB at MD Anderson Cancer Center between January 2018 and August 2019 for suspected ICI myocarditis were retrospectively reviewed. A grading system (Grades 0-2) based on the degree of inflammatory infiltrate was developed by pathologists. Cardiovascular outcomes and treatment were compared between grades of pathology. We identified 28 patients who had EMB for suspected ICI myocarditis, of which 18 were positive for myocarditis/inflammation. There were four deaths (two in Grade 2 and two in Grade 1), but only one was attributable to myocarditis. Grade 2 patients had no myocarditis-associated deaths despite having the highest troponin T values (median 2063 pg/mL). Four patients with Grade 1 myocardial inflammation continued ICI without any immunomodulation, and all were alive without adverse cardiovascular events at follow-up. CONCLUSION We defined an EMB grading system for ICI myocarditis encompassing a spectrum of histologic findings of inflammatory infiltrates. A subset of low-grade myocardial inflammation patients were able to continue ICI without immunosuppressive therapy. Further studies are needed to identify low-risk patients who can be safely treated with ICI.
Collapse
Affiliation(s)
- Nicolas L Palaskas
- Department of Cardiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Laura Lelenwa
- University of Texas Health Science Center, Houston, TX, USA
| | - Bilal A Siddiqui
- Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sumit K Subudhi
- Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Juan Lopez-Mattei
- Department of Cardiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Thoracic Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jean B Durand
- Department of Cardiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anita Deswal
- Department of Cardiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bihong Zhao
- University of Texas Health Science Center, Houston, TX, USA
| | | | - Cezar Iliescu
- Department of Cardiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
10
|
Bishawi M, Bowles D, Pla MM, Oakes F, Chiang Y, Schroder J, Milano C, Glass C. PD-1 and PD-L1 expression in cardiac transplantation. Cardiovasc Pathol 2021; 54:107331. [PMID: 33737091 DOI: 10.1016/j.carpath.2021.107331] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/14/2021] [Accepted: 02/18/2021] [Indexed: 12/24/2022] Open
Abstract
Programmed death-ligand 1 (PD-L1), a transmembrane protein and member of the CD28 T cell family is associated with lymphocyte activation.1 PD-L1 expression is upregulated on activated antigen presenting cells such as monocytes, myeloid and dendritic cells.2 When bound to its cognate receptor programmed cell death (PD-1), inhibition of immune responses including downregulation of T cell proliferation occurs.3 Mechanistically, such inhibition would be hypothetically favorable in the setting of a transplanted organ undergoing allograft rejection. However, there is a paucity of data addressing the role of PD-L1 and PD-1 expression in the human transplanted heart.
Collapse
Affiliation(s)
- Muath Bishawi
- Department of Surgery, Duke University, Durham NC; Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham NC
| | - Dawn Bowles
- Department of Surgery, Duke University, Durham NC
| | | | | | | | | | | | - Carolyn Glass
- Department of Pathology, Duke University, Durham NC; Duke Transplant Center, Duke University, Durham NC.
| |
Collapse
|
11
|
Garcia-Oliveira P, Otero P, Pereira AG, Chamorro F, Carpena M, Echave J, Fraga-Corral M, Simal-Gandara J, Prieto MA. Status and Challenges of Plant-Anticancer Compounds in Cancer Treatment. Pharmaceuticals (Basel) 2021; 14:ph14020157. [PMID: 33673021 PMCID: PMC7918405 DOI: 10.3390/ph14020157] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/03/2021] [Accepted: 02/06/2021] [Indexed: 12/12/2022] Open
Abstract
Nowadays, cancer is one of the deadliest diseases in the world, which has been estimated to cause 9.9 million deaths in 2020. Conventional treatments for cancer commonly involve mono-chemotherapy or a combination of radiotherapy and mono-chemotherapy. However, the negative side effects of these approaches have been extensively reported and have prompted the search of new therapeutic drugs. In this context, scientific community started to look for innovative sources of anticancer compounds in natural sources, including traditional plants. Currently, numerous studies have evaluated the anticancer properties of natural compounds derived from plants, both in vitro and in vivo. In pre-clinical stages, some promising compounds could be mentioned, such as the sulforaphane or different phenolic compounds. On the other hand, some phytochemicals obtained positive results in clinical stages and were further approved for cancer treatment, such as vinca alkaloids or the paclitaxel. Nevertheless, these compounds are not exempt of limitations, such as low solubility, restricted effect on their own, negative side-effects, etc. This review aims to compile the information about the current phytochemicals used for cancer treatment and also promising candidates, main action mechanisms and also reported limitations. In this sense, some strategies to face the limitations have been considered, such as nano-based formulations to improve solubility or chemical modification to reduce toxicity. In conclusion, although more research is still necessary to develop more efficient and safe phytochemical drugs, more of these compounds might be used in future cancer therapies.
Collapse
Affiliation(s)
- Paula Garcia-Oliveira
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (P.G.-O.); (P.O.); (A.G.P.); (F.C.); (M.C.); (J.E.); (M.F.-C.)
- Centro de Investigação de Montanha (CIMO), Campus de Santa Apolonia, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
| | - Paz Otero
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (P.G.-O.); (P.O.); (A.G.P.); (F.C.); (M.C.); (J.E.); (M.F.-C.)
| | - Antia Gonzalez Pereira
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (P.G.-O.); (P.O.); (A.G.P.); (F.C.); (M.C.); (J.E.); (M.F.-C.)
- Centro de Investigação de Montanha (CIMO), Campus de Santa Apolonia, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
| | - Franklin Chamorro
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (P.G.-O.); (P.O.); (A.G.P.); (F.C.); (M.C.); (J.E.); (M.F.-C.)
| | - Maria Carpena
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (P.G.-O.); (P.O.); (A.G.P.); (F.C.); (M.C.); (J.E.); (M.F.-C.)
| | - Javier Echave
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (P.G.-O.); (P.O.); (A.G.P.); (F.C.); (M.C.); (J.E.); (M.F.-C.)
| | - Maria Fraga-Corral
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (P.G.-O.); (P.O.); (A.G.P.); (F.C.); (M.C.); (J.E.); (M.F.-C.)
- Centro de Investigação de Montanha (CIMO), Campus de Santa Apolonia, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (P.G.-O.); (P.O.); (A.G.P.); (F.C.); (M.C.); (J.E.); (M.F.-C.)
- Correspondence: (J.S.-G.); (M.A.P.)
| | - Miguel Angel Prieto
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (P.G.-O.); (P.O.); (A.G.P.); (F.C.); (M.C.); (J.E.); (M.F.-C.)
- Correspondence: (J.S.-G.); (M.A.P.)
| |
Collapse
|
12
|
Kanno SI, Hara A. The mRNA expression of Il6 and Pdcd1 are predictive and protective factors for doxorubicin‑induced cardiotoxicity. Mol Med Rep 2020; 23:113. [PMID: 33300057 PMCID: PMC7723161 DOI: 10.3892/mmr.2020.11752] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 10/13/2020] [Indexed: 12/15/2022] Open
Abstract
Anthracyclines, such as doxorubicin (DOX), have been widely used in the treatment of a number of different solid and hematological malignancies. However, these drugs can inflict cumulative dose-dependent and irreversible damage to the heart, and can occasionally lead to heart failure. The cardiotoxic susceptibility varies among patients treated with anthracycline, and delays in the recognition of cardiotoxicity can result in poor prognoses. Accordingly, if the risk of cardiotoxicity could be predicted prior to drug administration, it would aid in safer and more effective chemotherapy treatment. The present study was carried out to identify genes that can predict DOX-induced cardiotoxicity (DICT). In an in vivo study, mice cumulatively treated with DOX demonstrated increases in serum levels of cardiac enzymes (aspartate aminotransferase, lactate dehydrogenase, creatine kinase MB isoenzyme and troponin T), in addition to decreases in body and heart weights. These changes were indicative of DICT, but the severity of these effects varied among individual mice. In the current study, the correlation in these mice between the extent of DICT and circulating blood concentrations of relevant transcripts before DOX administration was analyzed. Among various candidate genes, the plasma mRNA levels of the genes encoding interleukin 6 (Il6) and programmed cell death 1 (Pdcd1) in blood exhibited significant and positive correlations with the severity of DICT. In an in vitro study using cardiomyocyte H9c2 cells, knockdown of Il6 or Pdcd1 by small interfering RNA was revealed to enhance DOX-induced apoptosis, as determined by luminescent assays. These results suggested that the levels of transcription of Il6 and Pdcd1 in cardiomyocytes serve a protective role against DICT, and that the accumulation of these gene transcripts in blood is a predictive marker for DICT. To the best of our knowledge, this is the first report to demonstrate a role for Il6 and Pdcd1 mRNA expression in DICT.
Collapse
Affiliation(s)
- Syu-Ichi Kanno
- Department of Clinical Pharmacotherapeutics, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi 981‑8558, Japan
| | - Akiyoshi Hara
- Department of Clinical Pharmacotherapeutics, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi 981‑8558, Japan
| |
Collapse
|
13
|
Safi M, Ahmed H, Al-Azab M, Xia YL, Shan X, Al-radhi M, Al-danakh A, Shopit A, Liu J. PD-1/PDL-1 Inhibitors and Cardiotoxicity; Molecular, Etiological and Management Outlines. J Adv Res 2020; 29:45-54. [PMID: 33842004 PMCID: PMC8020146 DOI: 10.1016/j.jare.2020.09.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 09/10/2020] [Accepted: 09/10/2020] [Indexed: 12/16/2022] Open
Abstract
Background The US Food and Drug Administration (FDA) has approved several immunotherapeutic drugs for cancer since 2010, and many more are still being evaluated in other clinical studies. These inhibitors significantly increase response rates and result in the treatment of patients with advanced cancer. However, cancer immunotherapy leads to essential cardiac toxicity properties that have become distinct from other cancer patients' care and are mostly related to their etiology. Aim of review As potential implications, the occurrence of cardiovascular adverse events is particularly challenging and needs a comprehensive understanding of overall cancer-related etiology, clinical outcomes with different variable severity, and management. Key scientific concepts of review In terms of improving the overall survival of patients with cancer, clinicians should be careful in selecting either programmed cell death-1 (PD-1) or its programmed cell death ligand (PDL-1) inhibitors by evaluating their risk and clinical benefit for early intervention and decrease the level of morbidity and mortality of their patients. This review focuses on the effectiveness of PD-1/PL-1 antibodies and associated cardiotoxicity adverse events, including etiological mechanisms, diagnosis, and treatment.
Collapse
Affiliation(s)
- Mohammed Safi
- Department of Oncology, First Affiliated Hospital of Dalian Medical University, Zhongshan Road No. 222, Dalian 116021, China
| | - Hyat Ahmed
- Department of Stomatology, Oral Pathology, Dalian Medical University, Zhongshan Road No. 222, Dalian 116021, China
| | - Mahmoud Al-Azab
- Department of Immunology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Yun-long Xia
- Head of Department of Cardiology, Vice president of the First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian 116021, Liaoning, China
| | - Xiu Shan
- First Affiliated Hospital of Dalian Medical University, Zhongshan Road No. 222, Dalian 116021, China
| | - Mohammed Al-radhi
- Department of Urology, Second Affiliated Hospital of Dalian Medical University, Zhongshan Road No. 222, Dalian 116021, China
| | - Abdullah Al-danakh
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Zhongshan Road No. 222, Dalian 116021, China
| | - Abdullah Shopit
- Department of Pharmacology, Dalian Medical University, Zhongshan Road No. 222, Dalian 116021, China
| | - Jiwei Liu
- Head of Department of Oncology First Affiliated Hospital of Dalian Medical University, Zhongshan Road Dalian, Dalian Liaoning Province 116044, China
- Corresponding author.
| |
Collapse
|
14
|
Laursen AH, Elming MB, Ripa RS, Hasbak P, Kjær A, Køber L, Marott JL, Thune JJ, Hutchings M. Rubidium-82 positron emission tomography for detection of acute doxorubicin-induced cardiac effects in lymphoma patients. J Nucl Cardiol 2020; 27:1698-1707. [PMID: 30298372 DOI: 10.1007/s12350-018-1458-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 09/05/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND Doxorubicin is a cornerstone in lymphoma treatment, but is limited by dose-dependent cardiotoxicity. Rubidium-82 positron emission tomography (82Rb PET) assesses coronary microvascular function through absolute quantification of myocardial perfusion and myocardial perfusion reserve (MPR). Doxorubicin-induced microvascular injury represents a potential early marker of cardiotoxicity. METHODS AND RESULTS We included 70 lymphoma patients scheduled for doxorubicin-based treatment. Cardiotoxicity was evaluated with 82Rb PET myocardial perfusion imaging during rest and adenosine stress before chemotherapy and shortly after the first doxorubicin exposure. Patients with a MPR decline > 20% were defined as having a low threshold for cardiotoxicity. In the 54 patients with complete data sets, MPR was significantly lower after the initial doxorubicin exposure (2.69 vs 2.51, P = .03). We registered a non-significant decline in stress perfusion (3.18 vs 3.02 ml/g/min, P = .08), but no change in resting myocardial perfusion. There were 13 patients with a low cardiotoxic threshold. These patients had a significantly higher age, but were otherwise similar to the remaining part of the study population. CONCLUSION Decreases in MPR after initial doxorubicin exposure in lymphoma patients may represent an early marker of doxorubicin-induced cardiotoxicity. The prognostic value of acute doxorubicin-induced changes in MPR remains to be investigated.
Collapse
Affiliation(s)
- Adam Høgsbro Laursen
- Department of Hematology, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen Ø, Denmark.
| | - Marie Bayer Elming
- Department of Cardiology, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen Ø, Denmark
| | - Rasmus Sejersten Ripa
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Department of Biomedical Sciences, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen Ø, Denmark
| | - Philip Hasbak
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Department of Biomedical Sciences, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen Ø, Denmark
| | - Andreas Kjær
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Department of Biomedical Sciences, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen Ø, Denmark
| | - Lars Køber
- Department of Cardiology, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen Ø, Denmark
| | - Jacob Louis Marott
- Copenhagen City Heart Study, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, Nordre Fasanvej 57, 2000, Frederiksberg, Denmark
| | - Jens Jakob Thune
- Department of Cardiology, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen Ø, Denmark
- Department of Cardiology, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, Nordre Fasanvej 57, 2000, Frederiksberg, Denmark
- Department of Cardiology, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, Bispebjerg Bakke 23, 2400, Copenhagen NV, Denmark
| | - Martin Hutchings
- Department of Hematology, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen Ø, Denmark
| |
Collapse
|
15
|
Khunger A, Battel L, Wadhawan A, More A, Kapoor A, Agrawal N. New Insights into Mechanisms of Immune Checkpoint Inhibitor-Induced Cardiovascular Toxicity. Curr Oncol Rep 2020; 22:65. [DOI: 10.1007/s11912-020-00925-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
16
|
Laursen AH, Ripa RS, Hasbak P, Kjær A, Elming MB, Køber L, Hutchings M, Thune JJ. 123I-MIBG for detection of subacute doxorubicin-induced cardiotoxicity in patients with malignant lymphoma. J Nucl Cardiol 2020; 27:931-939. [PMID: 30569409 DOI: 10.1007/s12350-018-01566-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 11/21/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND Doxorubicin is the mainstay of curative lymphoma treatment but is associated with a dose-dependent cardiotoxicity that is often recognized too late to avoid substantial irreversible cardiac injury. Iodine-123 metaiodobenzylguanidine (123I-MIBG) is a gamma-emitting tracer that mimics noradrenaline uptake, storage, and release mechanisms in adrenergic presynaptic neurons. 123I-MIBG scintigraphy can be used for assessment of doxorubicin-induced injury to myocardial adrenergic neurons during treatment and could be the tool for early detection of doxorubicin cardiotoxicity, which is currently lacking. METHODS AND RESULTS A total of 37 lymphoma patients scheduled for doxorubicin treatment were included in our study. 123I-MIBG imaging was performed prior to chemotherapy and after a median of 4 cycles of doxorubicin. Early and late heart-to-mediastinum ratios (H/Mearly and H/Mlate) and washout rate (WOR) were used for evaluation of cardiotoxicity. The prognostic value of 123I-MIBG results was assessed using left ventricular ejection fraction (LVEF) as measured by cardiac magnetic resonance at 1-year follow-up. We found a post-therapy increase in WOR (including nine patients with > 10% increase), which was not statistically significant (18.6 vs 23.4%, P = 0.09). The difference appeared to be driven by an increase in H/Mearly. LVEF decreased from baseline to 1-year follow-up (64 vs 58%, P = 0.03). LVEF change was not associated with changes in WOR (P = 0.5). CONCLUSION The present study does not provide evidence for 123I-MIBG imaging as a clinically applicable tool for early detection of doxorubicin-induced cardiotoxicity.
Collapse
Affiliation(s)
- Adam Høgsbro Laursen
- Department of Hematology, Rigshospitalet, University of Copenhagen, section 9322, Blegdamsvej 9, 2100, Copenhagen, Denmark.
| | - Rasmus Sejersten Ripa
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Department of Biomedical Sciences, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Philip Hasbak
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Department of Biomedical Sciences, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Andreas Kjær
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Department of Biomedical Sciences, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Marie Bayer Elming
- Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Lars Køber
- Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Martin Hutchings
- Department of Hematology, Rigshospitalet, University of Copenhagen, section 9322, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Jens Jakob Thune
- Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Cardiology, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
17
|
Champion SN, Stone JR. Immune checkpoint inhibitor associated myocarditis occurs in both high-grade and low-grade forms. Mod Pathol 2020; 33:99-108. [PMID: 31534205 DOI: 10.1038/s41379-019-0363-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 11/09/2022]
Abstract
Immune checkpoint inhibitor therapy for malignancy has been associated with adverse events including myocarditis. It has been unclear if there are distinct pathologic grades of this myocarditis that are associated with distinct clinical outcomes. Cardiac tissue from ten patients with immune checkpoint inhibitor myocarditis (nine biopsies and one autopsy) were evaluated using immunohistochemistry for CD3, CD8, CD68, tryptase, PD-L1, and C4D. The immune checkpoint inhibitor myocarditis cases were classified as either high grade (>50 CD3+ cells/hpf) or low grade (≤50 CD3+ cells/hpf). The densities of macrophages, T cells, eosinophils, necrotic myocytes, and PD-L1+ macrophages and myocytes were compared between the two groups and with 13 cases of grade 2R acute cellular allograft rejection. Three patients were classified as high-grade myocarditis and seven as low grade. There were higher densities of CD3+ cells and CD8+ cells in high-grade immune checkpoint inhibitor myocarditis and rejection compared with low-grade myocarditis. The number of CD68+ macrophages was higher in high-grade myocarditis compared with low-grade myocarditis and rejection. For both grades of myocarditis, there was a higher CD68/CD3 ratio and a higher density of PD-L1+ macrophages and myocytes compared with rejection. Clinically, there were trends toward higher serum troponin levels and shorter interval from first immune checkpoint inhibitor treatment in the high-grade myocarditis group compared with the low-grade group. All the patients with high-grade myocarditis died, while all the patients with low-grade myocarditis were still living. These data suggest that immune checkpoint inhibitor myocarditis occurs in two forms, a high-grade form with increased inflammatory cell infiltration and a more fulminant clinical course, and a low-grade form with a lower degree of inflammatory cell infiltration and a more indolent clinical course. Compared with acute cellular rejection, immune checkpoint inhibitor myocarditis is characterized by a more lymphohistiocytic inflammatory infiltrate with an increased CD68/CD3 ratio and increased PD-L1+ macrophages and myocytes.
Collapse
Affiliation(s)
- Samantha N Champion
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - James R Stone
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
18
|
Ma W, Liu M, Liang F, Zhao L, Gao C, Jiang X, Zhang X, Zhan H, Hu H, Zhao Z. Cardiotoxicity of sorafenib is mediated through elevation of ROS level and CaMKII activity and dysregulation of calcium homoeostasis. Basic Clin Pharmacol Toxicol 2019; 126:166-180. [DOI: 10.1111/bcpt.13318] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 08/28/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Wenzhuo Ma
- Department of Pharmacology School of Basic Medical Sciences Xi'an Jiaotong University, Health Science Center Xi'an China
| | - Mei Liu
- Department of Pharmacology School of Basic Medical Sciences Xi'an Jiaotong University, Health Science Center Xi'an China
| | - Fanfan Liang
- Department of Pharmacology School of Basic Medical Sciences Xi'an Jiaotong University, Health Science Center Xi'an China
| | - Lili Zhao
- Department of Pharmacology School of Basic Medical Sciences Xi'an Jiaotong University, Health Science Center Xi'an China
| | - Chenying Gao
- Department of Pharmacology School of Basic Medical Sciences Xi'an Jiaotong University, Health Science Center Xi'an China
| | - Xixi Jiang
- Department of Pharmacology School of Basic Medical Sciences Xi'an Jiaotong University, Health Science Center Xi'an China
| | - Xin Zhang
- Department of Pharmacology School of Basic Medical Sciences Xi'an Jiaotong University, Health Science Center Xi'an China
| | - Heqin Zhan
- Department of Pharmacology School of Basic Medical Sciences Xi'an Jiaotong University, Health Science Center Xi'an China
- Department of Pharmacology College of Pharmacy Xinxiang Medical University Xinxiang Henan 453003 China
| | - Hao Hu
- Department of Pharmacology School of Basic Medical Sciences Xi'an Jiaotong University, Health Science Center Xi'an China
| | - Zhenghang Zhao
- Department of Pharmacology School of Basic Medical Sciences Xi'an Jiaotong University, Health Science Center Xi'an China
| |
Collapse
|
19
|
Guiney TE, Lopes MS, Kalra MK, Mooradian MJ, Neilan TG, Stone JR. Case 30-2019: A 65-Year-Old Woman with Lung Cancer and Chest Pain. N Engl J Med 2019; 381:1268-1277. [PMID: 31553841 DOI: 10.1056/nejmcpc1900423] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Timothy E Guiney
- From the Departments of Medicine (T.E.G., M.J.M., T.G.N.), Radiology (M.K.K.), and Pathology (J.R.S.), Massachusetts General Hospital, the Departments of Medicine (T.E.G., M.S.L., M.J.M., T.G.N.), Radiology (M.K.K.), and Pathology (J.R.S.), Harvard Medical School, and the Department of Medicine, Brigham and Women's Hospital (M.S.L.) - all in Boston
| | - Mathew S Lopes
- From the Departments of Medicine (T.E.G., M.J.M., T.G.N.), Radiology (M.K.K.), and Pathology (J.R.S.), Massachusetts General Hospital, the Departments of Medicine (T.E.G., M.S.L., M.J.M., T.G.N.), Radiology (M.K.K.), and Pathology (J.R.S.), Harvard Medical School, and the Department of Medicine, Brigham and Women's Hospital (M.S.L.) - all in Boston
| | - Mannudeep K Kalra
- From the Departments of Medicine (T.E.G., M.J.M., T.G.N.), Radiology (M.K.K.), and Pathology (J.R.S.), Massachusetts General Hospital, the Departments of Medicine (T.E.G., M.S.L., M.J.M., T.G.N.), Radiology (M.K.K.), and Pathology (J.R.S.), Harvard Medical School, and the Department of Medicine, Brigham and Women's Hospital (M.S.L.) - all in Boston
| | - Meghan J Mooradian
- From the Departments of Medicine (T.E.G., M.J.M., T.G.N.), Radiology (M.K.K.), and Pathology (J.R.S.), Massachusetts General Hospital, the Departments of Medicine (T.E.G., M.S.L., M.J.M., T.G.N.), Radiology (M.K.K.), and Pathology (J.R.S.), Harvard Medical School, and the Department of Medicine, Brigham and Women's Hospital (M.S.L.) - all in Boston
| | - Tomas G Neilan
- From the Departments of Medicine (T.E.G., M.J.M., T.G.N.), Radiology (M.K.K.), and Pathology (J.R.S.), Massachusetts General Hospital, the Departments of Medicine (T.E.G., M.S.L., M.J.M., T.G.N.), Radiology (M.K.K.), and Pathology (J.R.S.), Harvard Medical School, and the Department of Medicine, Brigham and Women's Hospital (M.S.L.) - all in Boston
| | - James R Stone
- From the Departments of Medicine (T.E.G., M.J.M., T.G.N.), Radiology (M.K.K.), and Pathology (J.R.S.), Massachusetts General Hospital, the Departments of Medicine (T.E.G., M.S.L., M.J.M., T.G.N.), Radiology (M.K.K.), and Pathology (J.R.S.), Harvard Medical School, and the Department of Medicine, Brigham and Women's Hospital (M.S.L.) - all in Boston
| |
Collapse
|
20
|
Newman JL, Stone JR. Immune checkpoint inhibition alters the inflammatory cell composition of human coronary artery atherosclerosis. Cardiovasc Pathol 2019; 43:107148. [PMID: 31518915 DOI: 10.1016/j.carpath.2019.107148] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/19/2019] [Accepted: 08/09/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Immune checkpoint inhibition (ICI) has emerged as a promising new approach to treat malignancy. Such therapies can result in autoimmune-related complications such as myocarditis and hepatitis. The impact of ICI on sites of preexisting chronic inflammation has been less clear. Atherosclerosis is a chronic vascular disease with a significant inflammatory component. METHODS To determine the effect of ICI on the inflammatory infiltrate in coronary artery atherosclerotic plaques, 11 patients who had recently been treated with ICI and subsequently underwent autopsy were matched with 11 cancer patients who had not received ICI treatment. The amount of CD3+ T-lymphocytes, CD8+ cytotoxic T-lymphocytes, and CD68+ macrophages and the ratios of the various cell types in the coronary artery atherosclerotic plaques were compared. RESULTS There was no significant difference in the absolute numbers of CD3+, CD8+, or CD68+ cells in the atherosclerotic plaques. In the plaques of the ICI-treated patients, there was a significant increase in the ratio of CD3+ cells to CD68+ cells (CD3/CD68) (P=.002) and a trend towards an increased CD8/CD68 ratio. The increased CD3/CD68 ratio in the ICI-treated patients resulted in 6 of the 11 patients having lymphocyte-predominate inflammation in contrast to the macrophage-predominate inflammation typically found in atherosclerotic plaques. CONCLUSIONS These findings indicate that ICI alters the inflammatory composition of human atherosclerotic plaque and, thus, may influence plaque progression and/or clinical coronary events. SUMMARY In cancer patients, treatment with immune checkpoint inhibition is associated with an altered inflammatory cell composition in coronary artery atherosclerotic plaques with an increased ratio of CD3+ T cells to CD68+ macrophages. Thus, immune checkpoint inhibition may influence plaque progression and/or clinical coronary events.
Collapse
Affiliation(s)
- Justine L Newman
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - James R Stone
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
21
|
罗 东, 汪 威, 陈 俊, 刘 宝, 陈 锦, 王 嫣, 陈 文. [Effects of low-intensity pulsed ultrasound on hematopoietic function in rats after combined chemotherapy with doxorubicin and cyclophosphamide]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:836-842. [PMID: 31340918 PMCID: PMC6765568 DOI: 10.12122/j.issn.1673-4254.2019.07.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the effect of low-intensity pulsed ultrasound (LIPUS) on hematopoietic function in rats after combined chemotherapy with doxorubicin and cyclophosphamide. METHODS Eighty rats were randomized into control group and LIPUS group (n=40) for treatment with intraperitoneal injection of doxorubicin (2 mg/kg)+cyclophosphamide (20 mg/kg) for 4 consecutive days and continuous irradiation with LIPUS for 7 days following the injections, respectively. The white blood cells, red blood cells and platelets counts in each group were measured at 0, 4, 7, 9, 11, 14 and 18 days after the start of drug administration. The pathological sections of the bone marrow were examined at 0, 4 and 11 days, and the flow cytometry was performed for detecting the cell apoptosis; qPCR was performed for detecting the expressions of SCF, ICAM-1, and VCAM-1 mRNAs, and ELISA was used to detect the expressions of IL-3 and GM-CSF. RESULTS The white blood cell count was significantly higher in LIPUS group than in the control group (P < 0.05). Histopathological examination of the bone marrow revealed significantly increased hematopoietic tissue in LIPUS group (P < 0.05). Flow cytometry demonstrated an obviously lower cell apoptosis rate in the bone marrow in LIPUS group than in the control group (P < 0.05). Compared with those in the control group, the mRNA expression levels of ICAM-1 and VCAM-1 as well as the protein levels of IL-3 and GM-CSF were significantly increased in LIPUS group (P < 0.05). CONCLUSIONS LIPUS can alleviate the hematopoietic damage after combined chemotherapy with doxorubicin with cyclophosphamide probably by increasing the expressions of ICAM- 1, VCAM-1, IL- 3, and GM-CSF.
Collapse
Affiliation(s)
- 东 罗
- />重庆医科大学生物医学工程学院//省部共建国家重点实验室培育基地-重庆市超声医学工程重点实验室//重庆 市生物医学工程学重点实验室,重庆 400016State Key Laboratory of Ultrasound Engineering in Medicine Co-founded by Chongqing and the Ministry of Science and Technol-ogy, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering; Chongqing Medical University, Chongqing Collaborative Innovation Center for Minimally-invasive and Noninvasive Medicine, Chongqing, 400016
| | - 威 汪
- />重庆医科大学生物医学工程学院//省部共建国家重点实验室培育基地-重庆市超声医学工程重点实验室//重庆 市生物医学工程学重点实验室,重庆 400016State Key Laboratory of Ultrasound Engineering in Medicine Co-founded by Chongqing and the Ministry of Science and Technol-ogy, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering; Chongqing Medical University, Chongqing Collaborative Innovation Center for Minimally-invasive and Noninvasive Medicine, Chongqing, 400016
| | - 俊林 陈
- />重庆医科大学生物医学工程学院//省部共建国家重点实验室培育基地-重庆市超声医学工程重点实验室//重庆 市生物医学工程学重点实验室,重庆 400016State Key Laboratory of Ultrasound Engineering in Medicine Co-founded by Chongqing and the Ministry of Science and Technol-ogy, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering; Chongqing Medical University, Chongqing Collaborative Innovation Center for Minimally-invasive and Noninvasive Medicine, Chongqing, 400016
| | - 宝茹 刘
- />重庆医科大学生物医学工程学院//省部共建国家重点实验室培育基地-重庆市超声医学工程重点实验室//重庆 市生物医学工程学重点实验室,重庆 400016State Key Laboratory of Ultrasound Engineering in Medicine Co-founded by Chongqing and the Ministry of Science and Technol-ogy, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering; Chongqing Medical University, Chongqing Collaborative Innovation Center for Minimally-invasive and Noninvasive Medicine, Chongqing, 400016
| | - 锦云 陈
- />重庆医科大学生物医学工程学院//省部共建国家重点实验室培育基地-重庆市超声医学工程重点实验室//重庆 市生物医学工程学重点实验室,重庆 400016State Key Laboratory of Ultrasound Engineering in Medicine Co-founded by Chongqing and the Ministry of Science and Technol-ogy, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering; Chongqing Medical University, Chongqing Collaborative Innovation Center for Minimally-invasive and Noninvasive Medicine, Chongqing, 400016
| | - 嫣 王
- />重庆医科大学生物医学工程学院//省部共建国家重点实验室培育基地-重庆市超声医学工程重点实验室//重庆 市生物医学工程学重点实验室,重庆 400016State Key Laboratory of Ultrasound Engineering in Medicine Co-founded by Chongqing and the Ministry of Science and Technol-ogy, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering; Chongqing Medical University, Chongqing Collaborative Innovation Center for Minimally-invasive and Noninvasive Medicine, Chongqing, 400016
| | - 文直 陈
- />重庆医科大学生物医学工程学院//省部共建国家重点实验室培育基地-重庆市超声医学工程重点实验室//重庆 市生物医学工程学重点实验室,重庆 400016State Key Laboratory of Ultrasound Engineering in Medicine Co-founded by Chongqing and the Ministry of Science and Technol-ogy, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering; Chongqing Medical University, Chongqing Collaborative Innovation Center for Minimally-invasive and Noninvasive Medicine, Chongqing, 400016
| |
Collapse
|
22
|
Buja LM, Ottaviani G, Mitchell RN. Pathobiology of cardiovascular diseases: an update. Cardiovasc Pathol 2019; 42:44-53. [PMID: 31255975 DOI: 10.1016/j.carpath.2019.06.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 06/07/2019] [Indexed: 01/10/2023] Open
Abstract
This article introduces the Second Special Issue of Cardiovascular Pathology (CVP), the official journal of the Society for Cardiovascular Pathology (SCVP). This CVP Special Issue showcases a series of commemorative review articles in celebration of the 25th anniversary of CVP originally published in 2016 and now compiled into a virtual collection with online access for the cardiovascular pathology community. This overview also provides updates on the major categories of cardiovascular diseases from the perspective of cardiovascular pathologists, highlighting publications from CVP, as well as additional important review articles and clinicopathologic references.
Collapse
Affiliation(s)
- L Maximilian Buja
- Department of Pathology and Laboratory Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Cardiovascular Pathology Research Laboratory, Texas Heart Institute, CHI St. Luke's Hospital, Houston, TX, USA.
| | - Giulia Ottaviani
- Department of Pathology and Laboratory Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; "Lino Rossi" Research Center for the study and prevention of unexpected perinatal death and sudden infant death syndrome, Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Richard N Mitchell
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW The aim of this review is to give the reader an up-to-date overview of the progress made in the burgeoning field of cardio-oncology, encompassing oncological treatments conferring risk, prediction strategies to identify patients at risk, imaging and biomarker monitoring for emergent or subclinical toxicity and prevention in primary and secondary settings with a focus on heart failure. RECENT FINDINGS The rapid recent advances in cancer management, particularly with the expansion of targeted and immunotherapies, have led to substantial improvements in outcome, but have also added to the potential causes of cardiac toxicity, which can lead to heart failure. Against this, there has been progression in the field of imaging for cardiac toxicity, identification of at-risk individuals and the clarification of the role of therapy for prevention and treatment of cardiac toxicity. SUMMARY The findings described in this review provide guidance to clinicians in order to direct monitoring strategy and therapy choice, both in the individual with preexisting cardiac comorbidities and in those predicted to be at the highest risk of cardiac toxicity wherever therapy elements carrying cardiac risk are considered oncologically appropriate.
Collapse
|
24
|
Tripaydonis A, Conyers R, Elliott DA. Pediatric Anthracycline-Induced Cardiotoxicity: Mechanisms, Pharmacogenomics, and Pluripotent Stem-Cell Modeling. Clin Pharmacol Ther 2019; 105:614-624. [PMID: 30460992 PMCID: PMC6590110 DOI: 10.1002/cpt.1311] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 11/08/2018] [Indexed: 12/18/2022]
Abstract
Anthracycline‐induced cardiotoxicity (ACT) is a severe adverse drug reaction for a subset of children treated with anthracyclines as part of chemotherapy protocols. The identification of genetic markers associated with increased ACT susceptibility has clinical significance toward improving patient care and our understanding of the molecular mechanisms involved in ACT. Human‐induced pluripotent stem cell–derived cardiomyocytes represent a novel approach to determine the pharmacogenomics of ACT and guide the development of genetic screening tests.
Collapse
Affiliation(s)
- Anne Tripaydonis
- Murdoch Childrens Research Institute, The Royal Children's Hospital, Parkville, Victoria, Australia.,Department of Paediatrics, The Royal Children's Hospital, The University of Melbourne, Parkville, Victoria, Australia
| | - Rachel Conyers
- Murdoch Childrens Research Institute, The Royal Children's Hospital, Parkville, Victoria, Australia.,Department of Paediatrics, The Royal Children's Hospital, The University of Melbourne, Parkville, Victoria, Australia.,Children's Cancer Centre, The Royal Children's Hospital, Parkville, Victoria, Australia
| | - David A Elliott
- Murdoch Childrens Research Institute, The Royal Children's Hospital, Parkville, Victoria, Australia.,Department of Paediatrics, The Royal Children's Hospital, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
25
|
Maleszewski JJ, Bois MC, Bois JP, Young PM, Stulak JM, Klarich KW. Neoplasia and the Heart. J Am Coll Cardiol 2018; 72:202-227. [DOI: 10.1016/j.jacc.2018.05.026] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/01/2018] [Accepted: 05/03/2018] [Indexed: 12/17/2022]
|