1
|
Moiroux-Sahraoui A, Manicone F, Herpain A. How preclinical models help to improve outcome in cardiogenic shock. Curr Opin Crit Care 2024; 30:333-339. [PMID: 38841979 DOI: 10.1097/mcc.0000000000001170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
PURPOSE OF REVIEW Preclinical experimentation of cardiogenic shock resuscitation on large animal models represents a powerful tool to decipher its complexity and improve its poor outcome, when small animal models are lacking external validation, and clinical investigation are limited due to technical and ethical constraints. This review illustrates the currently available preclinical models addressing reliably the physiopathology and hemodynamic phenotype of cardiogenic shock, highlighting on the opposite questionable translation based on low severity acute myocardial infarction (AMI) models. RECENT FINDINGS Three types of preclinical models replicate reliably AMI-related cardiogenic shock, either with coronary microembolization, coronary deoxygenated blood perfusion or double critical coronary sub-occlusion. These models overcame the pitfall of frequent periprocedural cardiac arrest and offer, to different extents, robust opportunities to investigate pharmacological and/or mechanical circulatory support therapeutic strategies, cardioprotective approaches improving heart recovery and mitigation of the systemic inflammatory reaction. They all came with their respective strengths and weaknesses, allowing the researcher to select the right preclinical model for the right clinical question. SUMMARY AMI-related cardiogenic shock preclinical models are now well established and should replace low severity AMI models. Technical and ethical constraints are not trivial, but this translational research is a key asset to build up meaningful future clinical investigations.
Collapse
Affiliation(s)
- Alexander Moiroux-Sahraoui
- Experimental Laboratory of Intensive Care, Université Libre de Bruxelles, Brussels, Belgium
- Department of Cardiac Surgery, Institut de Cardiologie, Hôpital de la Pitié-Salpêtrière, Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Francesca Manicone
- Experimental Laboratory of Intensive Care, Université Libre de Bruxelles, Brussels, Belgium
| | - Antoine Herpain
- Experimental Laboratory of Intensive Care, Université Libre de Bruxelles, Brussels, Belgium
- Department of Intensive Care, Saint-Pierre University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
2
|
Okamura T, Tsukamoto K, Arai H, Fujioka Y, Ishigaki Y, Koba S, Ohmura H, Shoji T, Yokote K, Yoshida H, Yoshida M, Deguchi J, Dobashi K, Fujiyoshi A, Hamaguchi H, Hara M, Harada-Shiba M, Hirata T, Iida M, Ikeda Y, Ishibashi S, Kanda H, Kihara S, Kitagawa K, Kodama S, Koseki M, Maezawa Y, Masuda D, Miida T, Miyamoto Y, Nishimura R, Node K, Noguchi M, Ohishi M, Saito I, Sawada S, Sone H, Takemoto M, Wakatsuki A, Yanai H. Japan Atherosclerosis Society (JAS) Guidelines for Prevention of Atherosclerotic Cardiovascular Diseases 2022. J Atheroscler Thromb 2024; 31:641-853. [PMID: 38123343 DOI: 10.5551/jat.gl2022] [Citation(s) in RCA: 69] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Affiliation(s)
- Tomonori Okamura
- Preventive Medicine and Public Health, Keio University School of Medicine
| | | | | | - Yoshio Fujioka
- Faculty of Nutrition, Division of Clinical Nutrition, Kobe Gakuin University
| | - Yasushi Ishigaki
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Iwate Medical University
| | - Shinji Koba
- Division of Cardiology, Department of Medicine, Showa University School of Medicine
| | - Hirotoshi Ohmura
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine
| | - Tetsuo Shoji
- Department of Vascular Medicine, Osaka Metropolitan University Graduate school of Medicine
| | - Koutaro Yokote
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine
| | - Hiroshi Yoshida
- Department of Laboratory Medicine, The Jikei University Kashiwa Hospital
| | | | - Juno Deguchi
- Department of Vascular Surgery, Saitama Medical Center, Saitama Medical University
| | - Kazushige Dobashi
- Department of Pediatrics, School of Medicine, University of Yamanashi
| | | | | | - Masumi Hara
- Department of Internal Medicine, Mizonokuchi Hospital, Teikyo University School of Medicine
| | - Mariko Harada-Shiba
- Cardiovascular Center, Osaka Medical and Pharmaceutical University
- Department of Molecular Pathogenesis, National Cerebral and Cardiovascular Center Research Institute
| | - Takumi Hirata
- Institute for Clinical and Translational Science, Nara Medical University
| | - Mami Iida
- Department of Internal Medicine and Cardiology, Gifu Prefectural General Medical Center
| | - Yoshiyuki Ikeda
- Department of Cardiovascular Medicine and Hypertension, Graduate School of Medical and Dental Sciences, Kagoshima University
| | - Shun Ishibashi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jichi Medical University, School of Medicine
- Current affiliation: Ishibashi Diabetes and Endocrine Clinic
| | - Hideyuki Kanda
- Department of Public Health, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Shinji Kihara
- Medical Laboratory Science and Technology, Division of Health Sciences, Osaka University graduate School of medicine
| | - Kazuo Kitagawa
- Department of Neurology, Tokyo Women's Medical University Hospital
| | - Satoru Kodama
- Department of Prevention of Noncommunicable Diseases and Promotion of Health Checkup, Department of Hematology, Endocrinology and Metabolism, Niigata University Faculty of Medicine
| | - Masahiro Koseki
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine
| | - Yoshiro Maezawa
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine
| | - Daisaku Masuda
- Department of Cardiology, Center for Innovative Medicine and Therapeutics, Dementia Care Center, Doctor's Support Center, Health Care Center, Rinku General Medical Center
| | - Takashi Miida
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine
| | | | - Rimei Nishimura
- Department of Diabetes, Metabolism and Endocrinology, The Jikei University School of Medicine
| | - Koichi Node
- Department of Cardiovascular Medicine, Saga University
| | - Midori Noguchi
- Division of Public Health, Department of Social Medicine, Graduate School of Medicine, Osaka University
| | - Mitsuru Ohishi
- Department of Cardiovascular Medicine and Hypertension, Graduate School of Medical and Dental Sciences, Kagoshima University
| | - Isao Saito
- Department of Public Health and Epidemiology, Faculty of Medicine, Oita University
| | - Shojiro Sawada
- Division of Metabolism and Diabetes, Faculty of Medicine, Tohoku Medical and Pharmaceutical University
| | - Hirohito Sone
- Department of Hematology, Endocrinology and Metabolism, Niigata University Faculty of Medicine
| | - Minoru Takemoto
- Department of Diabetes, Metabolism and Endocrinology, International University of Health and Welfare
| | | | - Hidekatsu Yanai
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital
| |
Collapse
|
3
|
Shin HS, Shin HH, Shudo Y. Current Status and Limitations of Myocardial Infarction Large Animal Models in Cardiovascular Translational Research. Front Bioeng Biotechnol 2021; 9:673683. [PMID: 33996785 PMCID: PMC8116580 DOI: 10.3389/fbioe.2021.673683] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/06/2021] [Indexed: 01/16/2023] Open
Abstract
Establishing an appropriate disease model that mimics the complexities of human cardiovascular disease is critical for evaluating the clinical efficacy and translation success. The multifaceted and complex nature of human ischemic heart disease is difficult to recapitulate in animal models. This difficulty is often compounded by the methodological biases introduced in animal studies. Considerable variations across animal species, modifications made in surgical procedures, and inadequate randomization, sample size calculation, blinding, and heterogeneity of animal models used often produce preclinical cardiovascular research that looks promising but is irreproducible and not translatable. Moreover, many published papers are not transparent enough for other investigators to verify the feasibility of the studies and the therapeutics' efficacy. Unfortunately, successful translation of these innovative therapies in such a closed and biased research is difficult. This review discusses some challenges in current preclinical myocardial infarction research, focusing on the following three major inhibitors for its successful translation: Inappropriate disease model, frequent modifications to surgical procedures, and insufficient reporting transparency.
Collapse
Affiliation(s)
- Hye Sook Shin
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States
| | - Heather Hyeyoon Shin
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Yasuhiro Shudo
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
4
|
Zambach C, Fedorowski A, Borné Y, Johnson LSB, Gerward S, Hamrefors V, Engström G. Cardiovascular risk factors and autonomic indices in relation to fatal and non-fatal coronary events. Open Heart 2021; 8:openhrt-2020-001445. [PMID: 33879505 PMCID: PMC8061811 DOI: 10.1136/openhrt-2020-001445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 03/27/2021] [Accepted: 04/07/2021] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE Mortality caused by coronary artery disease has markedly decreased in recent years. However, a substantial proportion of patients suffering a coronary event (CE) die within the first day, most of them out of hospital. We aimed to investigate how established cardiovascular (CV) risk factors and CV autonomic indices associate with fatal versus non-fatal CEs in the population. METHODS 33 057 individuals (mean age; 45.6 years; 10 773 women) free of coronary artery disease at baseline were included. Baseline examination, including assessment of traditional CV risk factors and autonomic indices such as heart rate and orthostatic reaction, was performed during 1974-1992, after which the subjects were monitored for incident CV disease. The Lunn-McNeil competing risks approach with a prespecified multivariable model was used to assess differences in risks for fatal and non-fatal CEs in relation to baseline CV risk factors. RESULTS During follow-up period of 29.7 years, 5494 subjects (6.10/1000 person-years) had first CE; 1554 of these were fatal. Age, male gender, smoking, body mass index (BMI), blood pressure, pulse pressure and resting heart rate had stronger relationships with fatal CE than with non-fatal events. The effects of diabetes, serum cholesterol, antihypertensive treatment and orthostatic blood pressure responses were similar for fatal and non-fatal CE. CONCLUSIONS Several cardiovascular risk factors, such as smoking, high BMI, blood pressure and high resting heart rate, were preferentially associated with fatal compared with non-fatal CEs. These observations may require special attention in the overall efforts to further reduce coronary artery disease mortality.
Collapse
Affiliation(s)
- Christian Zambach
- Department of Clinical Sciences, Lund University, Malmö, Sweden.,Department of Internal Medicine, Skåne University Hospital, Lund, Sweden
| | - Artur Fedorowski
- Department of Clinical Sciences, Lund University, Malmö, Sweden.,Department of Cardiology, Skåne University Hospital, Malmö, Sweden
| | - Yan Borné
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Linda S B Johnson
- Department of Clinical Sciences, Lund University, Malmö, Sweden.,Department of Medical Imaging and Physiology, Skåne University Hospital, Malmö, Sweden
| | - Sofia Gerward
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Viktor Hamrefors
- Department of Clinical Sciences, Lund University, Malmö, Sweden .,Department of Internal Medicine, Skåne University Hospital, Malmö, Sweden
| | - Gunnar Engström
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| |
Collapse
|
5
|
Yanai H, Yoshida H. Secondary dyslipidemia: its treatments and association with atherosclerosis. Glob Health Med 2021; 3:15-23. [PMID: 33688591 PMCID: PMC7936375 DOI: 10.35772/ghm.2020.01078] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/01/2020] [Accepted: 12/07/2020] [Indexed: 04/15/2023]
Abstract
Dyslipidemia is classified into primary and secondary types. Primary dyslipidemia is basically inherited and caused by single or multiple gene mutations that result in either overproduction or defective clearance of triglycerides and cholesterol. Secondary dyslipidemia is caused by unhealthy lifestyle factors and acquired medical conditions, including underlying diseases and applied drugs. Secondary dyslipidemia accounts for approximately 30-40% of all dyslipidemia. Secondary dyslipidemia should be treated by finding and addressing its causative diseases or drugs. For example, treatment of secondary dyslipidemia, such as hyperlipidemia due to hypothyroidism, by using statin without controlling hypothyroidism, may lead to myopathy and serious adverse events such as rhabdomyolysis. Differential diagnosis of secondary dyslipidemia is very important for safe and effective treatment. Here, we describe an overview about diseases and drugs that interfere with lipid metabolism leading to secondary dyslipidemia. Further, we show the association of each secondary dyslipidemia with atherosclerosis and the treatments for such dyslipidemia.
Collapse
Affiliation(s)
- Hidekatsu Yanai
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, Chiba, Japan
- Address correspondence to:Hidekatsu Yanai, Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, 1-7-1 Kohnodai, Ichikawa, Chiba 272- 8516, Japan. E-mail:
| | - Hiroshi Yoshida
- Department of Laboratory Medicine, The Jikei University Kashiwa Hospital, Chiba, Japan
| |
Collapse
|