1
|
Ibrahim A, Noby H, Elkady M. Valorization of polyurethane foam waste through the decoration with nano-polyaniline for dye decontamination from polluted water. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:923. [PMID: 39259367 DOI: 10.1007/s10661-024-13028-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 08/15/2024] [Indexed: 09/13/2024]
Abstract
Two polyurethane polyaniline nanocomposites have been synthesized using two in situ polymerization routes of dried and wet bases to valorize the polyurethane waste. The physical and chemical properties of polyurethane-based nanocomposites were compared using SEM, XRD, FTIR, and Zeta potential. SEM images showed that the average particle size of the dried-based composite was 56 nm, while the wet-based composite had an average size of 75 nm. The separation efficiency for methylene blue (MB) and Congo red (CR) dyes was evaluated against free polyurethane foam waste. It was evident that pure polyurethane (PPU) achieved only 4.79% and 16.71% removal for MB and CR, respectively. These dye decontamination efficiencies were enhanced after nano polyaniline decoration of polyurethane foam either through dried base polymerization (DPUP) or wet base polymerization (WPUP). WPUP composite records 11.23% and 85.99% for MB and CR removal, respectively, improved to 26.69% and 90.07% removal using DPUP composite for the respective dyes. The adsorption kinetics, isotherms, and thermodynamics were investigated. The experimental results revealed the pseudo-second-order kinetic model as the most accurately described kinetics model for both CR and MB adsorption. The Langmuir model provided the best fit for the data, with maximum adsorption capacities of 110.98 mg/g for CR and 26.86 mg/g for MB, with corresponding R-squared values of 0.9974 and 0.9608, respectively. Regeneration and reusability studies of PPU, WPUP, and DPUP showed effective reusability, with DPUP displaying the highest adsorption capacity. These results aid in creating eco-friendly and cost-efficient adsorbents for dye removal in environmental sanitation.
Collapse
Affiliation(s)
- Abubakar Ibrahim
- Chemical and Petrochemicals Engineering Department, Egypt-Japan University of Science and Technology, New Borg El-Arab City, Alexandria, Egypt
| | - H Noby
- Materials Engineering and Design, Faculty of Energy Engineering, Aswan University, Aswan, Egypt
| | - Marwa Elkady
- Chemical and Petrochemicals Engineering Department, Egypt-Japan University of Science and Technology, New Borg El-Arab City, Alexandria, Egypt.
- Fabrication Technology Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technology Applications, Alexandria, 21934, Egypt.
| |
Collapse
|
2
|
Abdel Salam J, Saleh AA, El Nenaiey TT, Yang H, Shoeib T, El-Sayed MMH. Mono- and Multicomponent Biosorption of Caffeine and Salicylic Acid onto Processed Cape Gooseberry Husk Agri-Food Waste. ACS OMEGA 2023; 8:20697-20707. [PMID: 37332775 PMCID: PMC10268614 DOI: 10.1021/acsomega.3c01254] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/16/2023] [Indexed: 06/20/2023]
Abstract
There is an increasing need to find cost-effective and sustainable solutions for treating wastewater from contaminants of emerging concern (CECs). In this regard, cape gooseberry husk-typically an agri-food waste-is investigated for the first time as a potential biosorbent for the removal of model pharmaceutical contaminants of caffeine (CA) and salicylic acid (SA) from water. Three different preparations of husks were investigated and characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, Brunauer-Emmett-Teller analysis, zeta potential, and point of zero charge measurements. The activation of the husk led to an increase in the surface area, pore volume, average pore size, and adsorption favorability. The single-component adsorption of SA and CA onto the three husks was investigated at different initial concentrations and pH values to determine the optimal operating conditions. The maximal removal efficiencies of SA and CA reached up to 85 and 63%, respectively, for the optimal husk which also offers a less energy-intensive option in its activation. This husk also exhibited high rates of adsorption that exceeded other husk preparations by up to four times. It was proposed that CA interacts electrostatically with the husk, while SA binds through weak physical interactions (e.g., van der Waals and H-bonding). In binary systems, CA adsorption was highly favored over SA adsorption, owing to its electrostatic interactions. The selectivity coefficients αSACA varied with initial concentration and ranged between 61 and 627. The regeneration of husk was also successful resulting in its re-use for up to four full consecutive cycles, further demonstrating the efficiency of cape gooseberry husk use in wastewater treatment.
Collapse
Affiliation(s)
- Jehan Abdel Salam
- Department
of Chemistry, School of Sciences and Engineering, The American University in Cairo, AUC Avenue, P.O. Box 74, New Cairo, 11835 Cairo, Egypt
| | - Amina A. Saleh
- Department
of Chemistry, School of Sciences and Engineering, The American University in Cairo, AUC Avenue, P.O. Box 74, New Cairo, 11835 Cairo, Egypt
| | - Toqa Taha El Nenaiey
- Department
of Chemistry, School of Sciences and Engineering, The American University in Cairo, AUC Avenue, P.O. Box 74, New Cairo, 11835 Cairo, Egypt
| | - Hu Yang
- State
Key Laboratory of Pollution Control and Resource Reuse, School of
the Environment, Nanjing University, Nanjing 210023, P. R. China
- Quanzhou
Institute for Environmental Protection Industry, Nanjing University, Beifeng Road, Quanzhou 362000, P. R. China
| | - Tamer Shoeib
- Department
of Chemistry, School of Sciences and Engineering, The American University in Cairo, AUC Avenue, P.O. Box 74, New Cairo, 11835 Cairo, Egypt
| | - Mayyada M. H. El-Sayed
- Department
of Chemistry, School of Sciences and Engineering, The American University in Cairo, AUC Avenue, P.O. Box 74, New Cairo, 11835 Cairo, Egypt
| |
Collapse
|
3
|
Saad S, Dávila I, Morales A, Labidi J, Moussaoui Y. Cross-Linked Carboxymethylcellulose Adsorbtion Membranes from Ziziphus lotus for the Removal of Organic Dye Pollutants. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8760. [PMID: 36556565 PMCID: PMC9785501 DOI: 10.3390/ma15248760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
The goal of this study is to assess Ziziphus lotus's potential for producing carboxymethylcellulose adsorption membranes with the ability to adsorb methyl green from wastewaters by the revalorization of its cellulosic fraction. The cellulose from this feedstock was extracted by an alkaline process and TAPPI standard technique T 203 cm-99 and afterwards they were carboxymethylated. The obtained carboxymethylcelluloses were deeply characterized, being observed that the carboxymethylcellulose produced from the alkaline cellulose presented the higher solubility due to its lower crystallinity degree (53.31 vs. 59.4%) and its higher substitution degree (0.85 vs. 0.74). This carboxymethylcellulose was cross-linked with citric acid in an aqueous treatment in order to form an adsorption membrane. The citric acid provided rigidity to the membrane and although it was hydrophilic it was not soluble in water. By evaluating the potential of the produced membrane for the removal of pollutant dyes from wastewater, it was observed that the adsorption membrane prepared from the carboxymethylcellulose's produced from the Ziziphus lotus was able to remove 99% of the dye, methyl green, present in the wastewater. Thus, this work demonstrates the potential of the Ziziphus lotus for the production of a novel and cost-effective carboxymethylcellulose adsorption membrane with high capacity to treat wastewaters.
Collapse
Affiliation(s)
- Sara Saad
- Laboratory for the Application of Materials to the Environment, Water and Energy (LR21ES15), Faculty of Sciences of Gafsa, University of Gafsa, Gafsa 2112, Tunisia
- Department of Chemical and Environmental Engineering, University of the Basque Country, UPV/EHU Plaza Europa 1, 20018 San Sebastián, Spain
- Faculty of Sciences of Gafsa, University of Gafsa, Gafsa 2112, Tunisia
| | - Izaskun Dávila
- Department of Chemical and Environmental Engineering, University of the Basque Country, UPV/EHU Plaza Europa 1, 20018 San Sebastián, Spain
- Department of Chemical and Environmental Engineering, University of the Basque Country, UPV/EHU Calle Nieves Cano 12, 01006 Vitoria-Gasteiz, Spain
| | - Amaia Morales
- Department of Chemical and Environmental Engineering, University of the Basque Country, UPV/EHU Plaza Europa 1, 20018 San Sebastián, Spain
| | - Jalel Labidi
- Department of Chemical and Environmental Engineering, University of the Basque Country, UPV/EHU Plaza Europa 1, 20018 San Sebastián, Spain
| | - Younes Moussaoui
- Faculty of Sciences of Gafsa, University of Gafsa, Gafsa 2112, Tunisia
- Organic Chemistry Laboratory (LR17ES08), Faculty of Sciences of Sfax, University of Sfax, Sfax 3029, Tunisia
| |
Collapse
|
4
|
Andrade-Guel M, Cabello-Alvarado CJ, Cadenas-Pliego G, Ávila-Orta CA. PLA-ZnO/TiO 2 Nanocomposite Obtained by Ultrasound-Assisted Melt-Extrusion for Adsorption of Methylene Blue. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4248. [PMID: 36500870 PMCID: PMC9736346 DOI: 10.3390/nano12234248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Access to fresh water is an increasing concern worldwide. The contamination of this vital liquid is largely caused by discharges of pollutants into rivers and seas from different types of industries. Waste dyes from different industries have been classified as harmful to health. In this study, polymeric nanomaterials based on polylactic acid (PLA) and nanoparticles of titanium dioxide (TiO2) and zinc oxide (ZnO) modified by ultrasound-assisted extrusion were obtained. These materials were evaluated by FTIR, DRX, TGA, DSC, SEM and methylene blue adsorption. From the results of the physicochemical characterizations, it was possible to observe the presence of TiO2 and ZnO nanoparticles dispersed in the polymeric matrix, increasing the crystallinity and thermal stability of the polymer. In addition, a good dispersion of the nanoparticles could be seen by means of SEM, due to the extrusion assisted by ultrasound. The methylene blue dye adsorption tests revealed that the best result was 98% dye adsorption in a time of 13 min for the 1.5% PZT sample. Additionally, this material could be used for 3 adsorption cycles without affecting its adsorbent properties.
Collapse
Affiliation(s)
| | - Christian J. Cabello-Alvarado
- Centro de Investigación en Química Aplicada, Saltillo 25294, Mexico
- CONACYT—Centro de Investigación en Química Aplicada, Saltillo 25294, Mexico
| | | | | |
Collapse
|
5
|
Godiya CB, Kumar S, Park BJ. Superior catalytic reduction of methylene blue and 4-nitrophenol by copper nanoparticles-templated chitosan nanocatalyst. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2022.100267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
|
6
|
Current Methods for Synthesis and Potential Applications of Cobalt Nanoparticles: A Review. CRYSTALS 2022. [DOI: 10.3390/cryst12020272] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cobalt nanoparticles (CoNPs) are promising nanomaterials with exceptional catalytic magnetic, electronic, and chemical properties. The nano size and developed surface open a wide range of applications of cobalt nanoparticles in biomedicine along with those properties. The present review assessed the current environmentally friendly synthesis methods used to synthesize CoNPs with various properties, such as size, zeta potential, surface area, and magnetic properties. We systematized several methods and provided some examples to illustrate the synthetic process of CoNPs, along with the properties, the chemical formula of obtained CoNPs, and their method of analysis. In addition, we also looked at the potential application of CoNPs from water purification cytostatic agents against cancer to theranostic and diagnostic agents. Moreover, CoNPs also can be used as contrast agents in magnetic resonance imaging and photoacoustic methods. This review features a comprehensive understanding of the synthesis methods and applications of CoNPs, which will help guide future studies on CoNPs.
Collapse
|
7
|
Iqbal A, Cevik E, Alagha O, Bozkurt A. Highly robust multilayer nanosheets with ultra-efficient batch adsorption and gravity-driven filtration capability for dye removal. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.02.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
8
|
Synthesis of Gold Nanoparticles Using Tannin-Rich Extract and Coating onto Cotton Textiles for Catalytic Degradation of Congo Red. JOURNAL OF NANOTECHNOLOGY 2021. [DOI: 10.1155/2021/6380283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Gold nanoparticles (AuNPs) were synthesized under ambient conditions from chloroauric acid in aqueous solution at pH 4. Tannin-rich extract from Xylocarpus granatum bark was used as both reducing and capping agent, rapidly converting Au (I) salt to AuNPs. Transmission electron microscopy showed the as-prepared AuNPs to be predominantly spherical, with an average diameter of 17 nm. The AuNPs were tested for catalytic reduction of Congo red (CR), a carcinogenic azo dye, in aqueous sodium borohydride solution. Cotton samples were coated with the AuNPs, taking on a reddish-purple color. The samples showed significantly reduced tearing strength after coating, though tensile strength was unaffected. UV-visible spectroscopy was used to determine the dye concentration in the water. CR degradation was observed only when AuNPs were present, and the efficiency of degradation was strongly linked to the AuNP loading. The AuNP-coated fabrics left only a 4.7% CR concentration in the solution after 24 h and therefore promise as a heterogeneous catalyst for degradation of CR in aqueous solution.
Collapse
|