1
|
Shaikh S, Chary PS, Mehra NK. Nano-interventions for dengue: a comprehensive review of control, detection and treatment strategies. Inflammopharmacology 2025; 33:979-1011. [PMID: 39976669 DOI: 10.1007/s10787-025-01655-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 01/12/2025] [Indexed: 03/19/2025]
Abstract
Dengue, a formidable life-threatening malady, currently exerts a profound impact upon the Western Pacific and Southeast-Asian developing and underdeveloped nations. The intricacies inherent in addressing dengue are manifold, requiring a concerted effort not only towards vector control but also the implementation of efficacious host treatments to forestall the progression of the disease into severe manifestations, such as hemorrhage and shock. The only vaccine available for dengue in the market is DENGVAXIA, with several other vaccine candidates which are currently in the clinical developmental stages. However, DENGVAXIA, owing to incidences of adverse events in among children, was withdrawn in Philippines. This warrants the development of new safer vaccine candidates. The existent control strategies, regrettably, demonstrate inadequacy in effectively mitigating the rampant dissemination of this ailment. Moreover, the diagnostic and therapeutic modalities exhibit potential for refinement, specifically through precision diagnostics and tailored therapeutic interventions, to enhance the precision and efficacy of dengue management. This comprehensive review endeavors to provide an in-depth elucidation of the utilization of nanotechnology-based approaches synergistically integrated with conventional methodologies in the overarching domains of dengue control, diagnosis, and treatment.
Collapse
Affiliation(s)
- Samia Shaikh
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Ministry of Chemical and Family Welfare, Hyderabad, Telangana, 500 037, India
| | - Padakanti Sandeep Chary
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Ministry of Chemical and Family Welfare, Hyderabad, Telangana, 500 037, India
| | - Neelesh Kumar Mehra
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Ministry of Chemical and Family Welfare, Hyderabad, Telangana, 500 037, India.
| |
Collapse
|
2
|
Wang J, Song L, Xing Y, Dai Y, Hu J, Qu G, Xu Y, Yin X, Hang D, Zhang J, Xiong C, Shi L, Xu F. A novel sustained-release agent based on disulfide-induced recombinant collagen hydrogels for the prevention and treatment of Schistosoma infections. Microbiol Spectr 2025; 13:e0377123. [PMID: 39699222 PMCID: PMC11792459 DOI: 10.1128/spectrum.03771-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 08/16/2024] [Indexed: 12/20/2024] Open
Abstract
Schistosomiasis is commonly managed using the praziquantel, but it is only effective against adult worms and duration of action is short. Liver fibrosis will worsen if eggs are still present after stopping treatment. Therefore, this study aimed to develop a sustained drug release system for effectively preventing and treating schistosomiasis. A disulfide bond-induced three-dimensional (3D) recombinant collagen hydrogel was developed for sustained praziquantel release. Three collagen sequences were developed based on the sequence for Scl2 of S. pyogene, with different substitutions of residues for cysteine (S-VCL-S1, S-VCL-S2, and S-VCL-S3). Their properties were tested. Mice were infected with Schistosoma japonicum cercariae and treated either with praziquantel collagen hydrogel or niclosamide collagen hydrogel. The worm-killing effect was examined. The application of hydrogel-niclosamide on the skin for 24 h effectively prevented Schistosome cercariae from infecting mice and showed 70.95% and 81.73% reduction in the number of eggs and worms, respectively. The combined use of niclosamide and anti-cercariae cream showed 100% protection after 24 h. The hydrogel-praziquantel also showed a 100% reduction of worms and eggs after 24 h of subcutaneous injection. The subcutaneous injection of praziquantel after 28 days of infection showed 95.19% and 80.12% reduction of worm and egg counts, respectively, and the development of larvae was significantly slowed down. Liver analysis showed no infection after 7 days of treatment. These results suggest developing a novel type of sustained-release agent against schistosomiasis based on the recombinant collagen hydrogel that provides a potential new treatment for schistosomiasis.IMPORTANCEThis study introduces an new way for treating schistosomiasis: a special collagen hydrogel that gradually releases medication to treat schistosomiasis effectively. This innovation provides a promising way to treat schistosomiasis. It represents a significant step forward in the fight against this disease and offers hope for more effective and safer treatments in the future.
Collapse
Affiliation(s)
- Jie Wang
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
- Ministry of Education Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Lijun Song
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Yuntian Xing
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Yang Dai
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Jinyuan Hu
- Ministry of Education Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Guoli Qu
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Yongliang Xu
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Xuren Yin
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Derong Hang
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Jianfeng Zhang
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Chunrong Xiong
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Liang Shi
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Fei Xu
- Ministry of Education Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
3
|
Increased Attraction and Stability of Beauveria bassiana-Formulated Microgranules for Aedes aegypti Biocontrol. J Fungi (Basel) 2022; 8:jof8080828. [PMID: 36012816 PMCID: PMC9409880 DOI: 10.3390/jof8080828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/30/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
Aedes aegypti (Linn.) incidence has increased in recent years, causing human viral diseases such as dengue, which are often fatal. Beauveria bassiana (Bals., Vuillemin) efficacy for Ae. aegypti biological control has been evidenced but it relies on host susceptibility and strain virulence. We hypothesized that B. bassiana conidia microgranular formulations (MGF) with the additives acetone, lactic acid, and sugar increase Ae. aegypti adult exposure, thus improving their biocontrol effectiveness. Beauveria bassiana strain four (BBPTG4) conidia stability was assessed after 0 d, 5 d, and 30 d storage at 25 °C ± 2 °C with additives or in MGF after 91 d of storage at 25 °C ± 2 °C or 4 °C ± 1 °C, whereas mortality was evaluated after adult exposure to MGF + conidia, using home-made traps. Additives did not show toxicity to conidia. In addition, we observed that sugar in MGF increased Ae. aegypti adults’ attraction and their viability resulted in a 3-fold reduction after 5 d and 1- to 4-fold decrease after 30 d of storage, and formulations were less attractive (p < 0.05). Conidia stability was higher on MGF regardless of the storage temperature, losing up to 2.5-fold viability after 91 d. In conclusion, BBPTG4 infected and killed Ae. aegypti, whereas MGF attracting adults resulted in 42.2% mortality, increasing fungus auto dissemination potential among infected surviving adults. It is necessary to further evaluate MGF against Ae. aegypti in the field.
Collapse
|