1
|
Cho JH, Ryu KH, Kim HJ, Back JH. Fabrication and Enhanced Flexibility of Starch-Based Cross-Linked Films. Biomacromolecules 2024; 25:7894-7903. [PMID: 39503338 PMCID: PMC11633652 DOI: 10.1021/acs.biomac.4c01172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 12/10/2024]
Abstract
The development of sustainable materials has driven significant interest in starch as a renewable and biodegradable polymer. However, the inherent brittleness, hydrophilicity, and lack of thermoplasticity of native starch limit its application in material science. This study addresses the limitations of native starch by converting it to dialdehyde starch (DAS) and cross-linking with polyether diamines via imine bonds. The effects of Jeffamine molecular weights (D-2000, D-400, and D-230) and mole ratios on the mechanical, thermal, and structural properties of starch-based films were examined. The cross-linked DAS/Js films exhibited significant enhancements in flexibility and toughness. Specifically, DAS/J2000 at a 0.03 mol ratio achieved a tensile strength of 62.9 MPa. In comparison, DAS/J400 at a 0.5 mol ratio demonstrated 126.2% elongation at break, indicating the balance between cross-linking density and chain mobility. X-ray diffraction (XRD) analysis revealed reduced crystallinity and tighter molecular packing with increased cross-linking. Dynamic mechanical analysis (DMA) indicated a decrease in Tg with an increasing mole ratio, reflecting enhanced molecular mobility. The results underscore the potential of optimized cross-linking conditions to produce starch-based films with properties that contribute to developing sustainable biopolymer materials.
Collapse
Affiliation(s)
- Ji-Hyun Cho
- Laboratory
of Adhesion & Bio-Composites, Department of Agriculture, Forestry
and Bioresources, Seoul National University, Seoul 08826, Republic of Korea
| | - Kwang-Hyun Ryu
- Laboratory
of Adhesion & Bio-Composites, Department of Agriculture, Forestry
and Bioresources, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyun-Joong Kim
- Laboratory
of Adhesion & Bio-Composites, Department of Agriculture, Forestry
and Bioresources, Seoul National University, Seoul 08826, Republic of Korea
- Research
Institute of Agriculture and Life Sciences, College of Agriculture
and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jong-Ho Back
- Research
Institute of Agriculture and Life Sciences, College of Agriculture
and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
2
|
Akmeemana C, Somendrika D, Wickramasinghe I, Wijesekara I. Cassava pomace-based biodegradable packaging materials: a review. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:1013-1034. [PMID: 38562601 PMCID: PMC10981652 DOI: 10.1007/s13197-023-05807-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/07/2023] [Accepted: 07/18/2023] [Indexed: 04/04/2024]
Abstract
Starch-based biodegradable packaging materials are gaining popularity as an alternative to the adverse environmental effects caused by conventional packaging materials. Despite the fact that cassava can withstand harsh environmental conditions and convert a greater quantity of solar energy into carbohydrates, its postharvest shelf life is extremely short. The preparation of cassava starch is an important method for extending the storage life of cassava. When one ton of cassava is processed, approximately 900 kg of cassava pomace, also known as cassava bagasse and cassava pulp, are produced. Due to the high residual starch and fibre content, reinforced packaging materials made from cassava pomace predominate. In the present manuscript, many possible uses of cassava pomace in packaging materials are discussed. Furthermore, the performance attributes of packing materials assume a crucial role in the evaluation of the quality of the respective materials. The manuscript discusses various performance characteristics of packaging materials derived from cassava pomace. The features discussed include water vapour permeability, moisture content, solubility, thickness, colour, light barrier properties, mechanical properties, FT-IR analysis, thermal stability, biodegradation, contact angle, and the presence of plasticizers. Though cassava starch film has become a favourable substitute for conventional packaging materials, commercialization is limited due to having drawbacks, and the current solutions are also catalogued in this review.
Collapse
Affiliation(s)
- Chalani Akmeemana
- Department of Food Science and Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Dulani Somendrika
- Department of Food Science and Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Indira Wickramasinghe
- Department of Food Science and Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
- Fakultät Physikalische Technik/Informatik, University of Applied Sciences, Westsächsische Hochschule Zwickau, Zwickau, 08056 Germany
| | - Isuru Wijesekara
- Department of Food Science and Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| |
Collapse
|
3
|
Novo DC, Edgar KJ. Smart fluorescent polysaccharides: Recent developments and applications. Carbohydr Polym 2024; 324:121471. [PMID: 37985079 PMCID: PMC10661488 DOI: 10.1016/j.carbpol.2023.121471] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/27/2023] [Accepted: 10/06/2023] [Indexed: 11/22/2023]
Abstract
Polysaccharides are ubiquitous, generally benign in nature, and compatible with many tissues in biomedical situations, making them appealing candidates for new materials such as therapeutic agents and sensors. Fluorescent labeling can create the ability to sensitively monitor distribution and transport of polysaccharide-based materials, which can for example further illuminate drug-delivery mechanisms and therefore improve design of delivery systems. Herein, we review fluorophore selection and ways of appending polysaccharides, utility of the product fluorescent polysaccharides as new smart materials, and their stimulus-responsive nature, with focus on their biomedical applications as environment-sensitive biosensors, imaging, and as molecular rulers. Further, we discuss the advantages and disadvantages of these methods, and future prospects for creation and use of these self-reporting materials.
Collapse
Affiliation(s)
- Diana C Novo
- Department of Sustainable Biomaterials, Virginia Tech, Blacksburg, VA 24061, United States; Department of Chemistry, Virginia Tech, Blacksburg, VA 24061, United States
| | - Kevin J Edgar
- Department of Sustainable Biomaterials, Virginia Tech, Blacksburg, VA 24061, United States; Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States; GlycoMIP, National Science Foundation Materials Innovation Platform, United States.
| |
Collapse
|
4
|
Qureshi MAUR, Arshad N, Rasool A, Rizwan M, Rasheed T. Guar gum-based stimuli responsive hydrogels for sustained release of diclofenac sodium. Int J Biol Macromol 2023; 250:126275. [PMID: 37567541 DOI: 10.1016/j.ijbiomac.2023.126275] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 08/06/2023] [Accepted: 08/09/2023] [Indexed: 08/13/2023]
Abstract
In the current study, hydrogels for the controlled release of diclofenac sodium were synthesized from graphene oxide-reinforced guar gum and poly (N-vinyl-2-pyrrolidone) using the Solution Casting Technique. Varying concentrations of 3-Glycidyloxypropyl trimethoxysilane (GLYMO) were employed for the crosslinking of hydrogels. Further, the characterization of hydrogels was carried out using different techniques such as Fourier Transform Infrared Spectroscopy (FTIR), X-ray diffraction, thermal analysis and scanning electron microscope. The FTIR investigations reveals particular functionalities and development of hydrogel interfaces. While thermal analysis prophesied that, improvement in forces among hydrogel components is directly proportional to the GLYMO concentration. In-vitro biodegradation test and cell viability assay against HEK-293 cell lines confirmed their biodegradable and biocompatible nature. GPG-32 demonstrated maximum antibacterial activity against P.aeruginosa and E.coli strains. The maximum swelling 2001 % and 1814 % in distilled water were recorded for GPG (control) and GPG-8 respectively that obeyed Fick's law. Hydrogels displayed high swelling responses at pH 6 in buffer and non-buffer solutions. In 2.5 h, 88.7 % diclofenac sodium was released which was determined by UV visible spectrophotometer. In conclusion, guar gum-based non-toxic, biocompatible and biodegradable hydrogels would be a model platform for targeting inflammation and pains. Furthermore, improved mechanical and viscoelastic behavior of hydrogels could also be explored for making drug loaded dressings for wound healing applications.
Collapse
Affiliation(s)
| | - Nasima Arshad
- Department of Chemistry, Allama Iqbal Open University Islamabad, Pakistan.
| | - Atta Rasool
- School of Chemistry, University of the Punjab, 54590 Lahore, Pakistan
| | - Muhmmad Rizwan
- Department of Chemistry, The University of Lahore, Lahore 54000, Pakistan
| | - Tahir Rasheed
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia.
| |
Collapse
|
5
|
Kishore A, Mithul Aravind S, Singh A. Bionanocomposites for active and smart food packaging: A review on its application, safety, and health aspects. J FOOD PROCESS ENG 2023. [DOI: 10.1111/jfpe.14320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
6
|
Chemiru G, Gonfa G. Preparation and characterization of glycerol plasticized yam starch-based films reinforced with titanium dioxide nanofiller. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2023. [DOI: 10.1016/j.carpta.2023.100300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
|
7
|
Akhter F, Jamali AR, Abbasi MN, Mallah MA, Rao AA, Wahocho SA, Anees-Ur-Rehman H, Chandio ZA. A comprehensive review of hydrophobic silica and composite aerogels: synthesis, properties and recent progress towards environmental remediation and biomedical applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:11226-11245. [PMID: 36513899 DOI: 10.1007/s11356-022-24689-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
The hydrophobicity of silica and composite aerogels has enabled them to acquire applications in a variety of fields. With remarkable structural, morphological, and physiochemical properties such as high porosity, surface area, chemical stability, and selectivity, these materials have gained much attention of researchers worldwide. Moreover, the hydrophobic conduct has enabled these aerogels to adsorb substances, i.e., organic pollutants, without collapsing the pore and network structure. Hence, considering such phenomenal properties and great adsorption potential, exploiting these materials for environmental and biomedical applications is trending. The present study explores the most recent advances in synthetic approaches and resulting properties of hydrophobic silica and composite aerogels. It presents the various precursors and co-precursors used for hydrophobization and gives a comparative analysis of drying methods. Moreover, as a major focus, the work presents the recent progress where these materials have shown promising results for various environmental remediation and biomedical applications. Finally, the bottlenecks in synthesis and applicability along with future prospects are given in conclusions.
Collapse
Affiliation(s)
- Faheem Akhter
- Department of Chemical Engineering, Quaid-E-Awam University of Engineering, Science and Technology, Nawabshah, Pakistan.
| | - Abdul Rauf Jamali
- Materials Engineering Department, NED University of Engineering and Technology, Karachi, Pakistan
| | - Mahmood Nabi Abbasi
- Department of Chemical Engineering, Quaid-E-Awam University of Engineering, Science and Technology, Nawabshah, Pakistan
| | - Mukhtiar Ali Mallah
- Department of Chemical Engineering, Quaid-E-Awam University of Engineering, Science and Technology, Nawabshah, Pakistan
| | - Ahsan Atta Rao
- Department of Chemical Engineering, Quaid-E-Awam University of Engineering, Science and Technology, Nawabshah, Pakistan
| | - Shafeeque Ahmed Wahocho
- Department of Chemical Engineering, Quaid-E-Awam University of Engineering, Science and Technology, Nawabshah, Pakistan
| | - Hafiz Anees-Ur-Rehman
- Department of Chemical Engineering, Quaid-E-Awam University of Engineering, Science and Technology, Nawabshah, Pakistan
| | - Zubair Ahmed Chandio
- Department of Chemical Engineering, Quaid-E-Awam University of Engineering, Science and Technology, Nawabshah, Pakistan
| |
Collapse
|
8
|
Falsafi SR, Wang Y, Ashaolu TJ, Sharma M, Rawal S, Patel K, Askari G, Javanmard SH, Rostamabadi H. Biopolymer Nanovehicles for Oral Delivery of Natural Anticancer Agents. ADVANCED FUNCTIONAL MATERIALS 2023; 33. [DOI: 10.1002/adfm.202209419] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Indexed: 01/06/2025]
Abstract
AbstractCancer is the second leading cause of death throughout the world. Nature‐inspired anticancer agents (NAAs) that are a gift of nature to humanity have been extensively utilized in the alleviation/prevention of the disease due to their numerous pharmacological activities. While the oral route is an ideal and common way of drug administration, the application of NAAs through the oral pathway has been extremely limited owing to their inherent features, e.g., poor solubility, gastrointestinal (GI) instability, and low bioavailability. With the development of nano‐driven encapsulation strategies, polymeric vehicles, especially those with natural origins, have demonstrated a potent platform, which can professionally shield versatile NAAs against GI barricades and safely deliver them to the site of action. In this review, the predicament of orally delivering NAAs and the encapsulation strategy solutions based on biopolymer matrices are summarized. Proof‐of‐concept in vitro/in vivo results are also discussed for oral delivery of these agents by various biopolymer vehicles, which can be found so far from the literature. Last but not the least, the challenges and new opportunities in the field are highlighted.
Collapse
Affiliation(s)
- Seid Reza Falsafi
- Isfahan Endocrine and Metabolism Research Center Isfahan University of Medical Sciences Isfahan 81746‐73461 Iran
| | - Yong Wang
- School of Chemical Engineering UNSW Sydney Sydney NSW 2052 Australia
| | - Tolulope Joshua Ashaolu
- Institute of Research and Development Duy Tan University Da Nang 550000 Viet Nam
- Faculty of Environmental and Chemical Engineering Duy Tan University Da Nang 550000 Viet Nam
| | - Minaxi Sharma
- Laboratoire de Chimie verte et Produits Biobasés Haute Ecole Provinciale de Hainaut‐Condorcet Département AgroBioscience et Chimie 11, Rue de la Sucrerie 7800 ATH Belgium
- Department of Applied Biology University of Science and Technology Ri‐Bhoi Meghalaya 793101 India
| | - Shruti Rawal
- Department of Pharmaceutical Technology L.J. Institute of Pharmacy L J University Ahmedabad 382210 India
- Department of Pharmaceutics Institute of Pharmacy Nirma University S.G. Highway, Chharodi Ahmedabad Gujarat 382481 India
| | - Kaushika Patel
- Department of Pharmaceutical Technology L.J. Institute of Pharmacy L J University Ahmedabad 382210 India
| | - Gholamreza Askari
- Department of Community Nutrition School of Nutrition and Food Science Nutrition and Food Security Research Center Isfahan University of Medical Sciences Isfahan 81746‐73461 Iran
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center Cardiovascular Research Institute Isfahan University of Medical Isfahan 81746‐73461 Iran
| | - Hadis Rostamabadi
- Nutrition and Food Security Research Center Isfahan University of Medical Sciences Isfahan 81746‐73461 Iran
| |
Collapse
|
9
|
Fekete E, Angyal L, Csiszár E. The Effect of Surface Characteristics of Clays on the Properties of Starch Nanocomposites. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15217627. [PMID: 36363218 PMCID: PMC9654006 DOI: 10.3390/ma15217627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/20/2022] [Accepted: 10/26/2022] [Indexed: 06/12/2023]
Abstract
In this research, different clays such as laponite and montmorillonite (NaMMT) are used as fillers in the preparation of thermoplastic starch/clay nanocomposites. Thin films are produced by casting and evaporation in a wide composition range, using glycerol as the plasticizer at two different concentrations. The surface energy of clay fillers is measured by inverse gas chromatography (IGC); X-ray diffraction (XRD) and light transmission measurements (UV-VIS) are carried out to characterize the structure of nanocomposites; and mechanical properties and water vapor permeability are also studied. While all the starch/montmorillonite nanocomposites possess intercalated structures, significant exfoliation can be noted in the starch/laponite nanocomposites, mainly at low clay contents. Due to the larger surface energy of montmorillonite, stronger polymer/clay interactions and better mechanical properties can be assumed in starch/NaMMT composites. The smaller surface energy of laponite, however, can facilitate the delamination of laponite layers. Thus, the specific surface area of laponite can be further increased by exfoliation. Based on the results, the better exfoliation and the much larger specific surface area of laponite lead to higher reinforcement in starch/laponite nanocomposites.
Collapse
Affiliation(s)
- Erika Fekete
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary
- Laboratory of Plastics and Rubber Technology, Department of Physical Chemistry and Materials Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Lilla Angyal
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary
- Laboratory of Plastics and Rubber Technology, Department of Physical Chemistry and Materials Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Emília Csiszár
- Laboratory of Plastics and Rubber Technology, Department of Physical Chemistry and Materials Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| |
Collapse
|
10
|
Falua KJ, Pokharel A, Babaei-Ghazvini A, Ai Y, Acharya B. Valorization of Starch to Biobased Materials: A Review. Polymers (Basel) 2022; 14:polym14112215. [PMID: 35683888 PMCID: PMC9183024 DOI: 10.3390/polym14112215] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 12/17/2022] Open
Abstract
Many concerns are being expressed about the biodegradability, biocompatibility, and long-term viability of polymer-based substances. This prompted the quest for an alternative source of material that could be utilized for various purposes. Starch is widely used as a thickener, emulsifier, and binder in many food and non-food sectors, but research focuses on increasing its application beyond these areas. Due to its biodegradability, low cost, renewability, and abundance, starch is considered a "green path" raw material for generating porous substances such as aerogels, biofoams, and bioplastics, which have sparked an academic interest. Existing research has focused on strategies for developing biomaterials from organic polymers (e.g., cellulose), but there has been little research on its polysaccharide counterpart (starch). This review paper highlighted the structure of starch, the context of amylose and amylopectin, and the extraction and modification of starch with their processes and limitations. Moreover, this paper describes nanofillers, intelligent pH-sensitive films, biofoams, aerogels of various types, bioplastics, and their precursors, including drying and manufacturing. The perspectives reveal the great potential of starch-based biomaterials in food, pharmaceuticals, biomedicine, and non-food applications.
Collapse
Affiliation(s)
- Kehinde James Falua
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada; (K.J.F.); (A.P.); (A.B.-G.)
- Department of Agricultural & Biosystems Engineering, University of Ilorin, Ilorin PMB 1515, Nigeria
| | - Anamol Pokharel
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada; (K.J.F.); (A.P.); (A.B.-G.)
| | - Amin Babaei-Ghazvini
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada; (K.J.F.); (A.P.); (A.B.-G.)
| | - Yongfeng Ai
- Department of Food and Bioproduct Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada;
| | - Bishnu Acharya
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada; (K.J.F.); (A.P.); (A.B.-G.)
- Correspondence:
| |
Collapse
|