1
|
Chen G, Khan IM, Zhang T, Campanella OH, Miao M. Alternansucrase as a key enabling tool of biotransformation from molecular features to applications: A review. Int J Biol Macromol 2024; 279:135096. [PMID: 39214198 DOI: 10.1016/j.ijbiomac.2024.135096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 08/21/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
Alternansucrase (ASR), classified in GH70, produces unique α-glucans with alternating α-1,3 and α-1,6 glycosidic linkages in the backbone chain from renewable sucrose which is easily obtained from nature with low cost. ASR has synthesized many products with valuable functionalities that hold enormous commercial interest and promising applications. The influence of biocatalysis and fermentation parameters on the yields, and properties of products are critical for the propositions made to promote the enzyme application. Investigations on ASR have been compiled in the review to provide information on the enzyme, products and parameters. This review summarizes studies on the characteristics, conversion mechanism, products, and beneficial applications of ASR and exhibits structure-based technologies to improve enzyme activity, specificity, and thermostability for industrial applications. Finally, prospects for further development are also proposed for various ASR applications in food and other fields.
Collapse
Affiliation(s)
- Gang Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; College of Food and Health, Zhejiang Agriculture and Forest University, Hangzhou 311300, China
| | - Imran Mahmood Khan
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Osvaldo H Campanella
- Department of Food Science and Technology, Ohio State University, Columbus, OH, USA
| | - Ming Miao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
2
|
Tagami T. Structural insights into starch-metabolizing enzymes and their applications. Biosci Biotechnol Biochem 2024; 88:864-871. [PMID: 38806254 DOI: 10.1093/bbb/zbae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/13/2024] [Indexed: 05/30/2024]
Abstract
Starch is a polysaccharide produced exclusively through photosynthesis in plants and algae; however, is utilized as an energy source by most organisms, from microorganisms to higher organisms. In mammals and the germinating seeds of plants, starch is metabolized by simple hydrolysis pathways. Moreover, starch metabolic pathways via unique oligosaccharides have been discovered in some bacteria. Each organism has evolved enzymes responsible for starch metabolism that are diverse in their enzymatic properties. This review, focusing on eukaryotic α-glucosidases and bacterial α-glucoside-hydrolyzing enzymes, summarizes the structural aspects of starch-metabolizing enzymes belonging to glycoside hydrolase families 15, 31, and 77 and their application for oligosaccharide production.
Collapse
Affiliation(s)
- Takayoshi Tagami
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|
3
|
Fujita A, Kawashima A, Noguchi Y, Hirose S, Kitagawa N, Watanabe H, Mori T, Nishimoto T, Aga H, Ushio S, Yamamoto K. Cloning of the cycloisomaltotetraose-forming enzymes using whole genome sequence analyses of Agreia sp. D1110 and Microbacterium trichothecenolyticum D2006. Biosci Biotechnol Biochem 2021; 86:68-77. [PMID: 34661636 DOI: 10.1093/bbb/zbab181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/08/2021] [Indexed: 11/14/2022]
Abstract
We performed whole genome sequence analyses of Agreia sp. D1110 and Microbacterium trichothecenolyticum D2006 that secrete enzymes to produce cyclo-{→6)-α-d-Glcp-(1→6)-α-d-Glcp-(1→6)-α-d-Glcp-(1→6)-α-d-Glcp-(1→} (CI4) from dextran. Full-length amino acid sequences of CI4-forming enzymes were identified by matching known N-terminal amino acid sequences with products of the draft genome. Domain searches revealed that the CI4-forming enzymes are composed of Glycoside Hydrolase family 66 (GH66) domain, Carbohydrate Binding Module family 35 (CBM35) domain, and CBM13 domain, categorizing the CI4-forming enzymes in the GH66. Furthermore, the amino acid sequences of the two CI4-forming enzymes were 71% similar to each other and up to 51% similar to cycloisomaltooligosaccharide glucanotransferases (CITases) categorized in GH66. Differences in sequence between the CI4-forming enzymes and the CITases suggest mechanisms to produce specific cycloisomaltooligosaccharides, and whole genome sequence analyses identified a gene cluster whose gene products likely work in concert with the CI4-forming enzymes.
Collapse
Affiliation(s)
- Akihiro Fujita
- Research and Technology Division, HAYASHIBARA CO., LTD., Okayama, Japan
| | - Akira Kawashima
- Research and Technology Division, HAYASHIBARA CO., LTD., Okayama, Japan
| | - Yuji Noguchi
- Nagase R&D center, NAGASE & CO. LTD., Murotani, Hyogo, Japan
| | - Shuichi Hirose
- Nagase R&D center, NAGASE & CO. LTD., Murotani, Hyogo, Japan
| | - Noriaki Kitagawa
- Research and Technology Division, HAYASHIBARA CO., LTD., Okayama, Japan
| | - Hikaru Watanabe
- Research and Technology Division, HAYASHIBARA CO., LTD., Okayama, Japan
| | - Tetsuya Mori
- Research and Technology Division, HAYASHIBARA CO., LTD., Okayama, Japan
| | | | - Hajime Aga
- Research and Technology Division, HAYASHIBARA CO., LTD., Okayama, Japan
| | - Shimpei Ushio
- Research and Technology Division, HAYASHIBARA CO., LTD., Okayama, Japan
| | - Koryu Yamamoto
- Research and Technology Division, HAYASHIBARA CO., LTD., Okayama, Japan
| |
Collapse
|
4
|
Fujita A, Kawashima A, Mitsukawa Y, Kitagawa N, Watanabe H, Mori T, Nishimoto T, Aga H, Ushio S. Purification and characterization of cycloisomaltotetraose-forming glucanotransferases from Agreia sp. D1110 and Microbacterium trichothecenolyticum D2006. Biosci Biotechnol Biochem 2021; 85:600-610. [PMID: 33624786 DOI: 10.1093/bbb/zbaa093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/18/2020] [Indexed: 11/14/2022]
Abstract
Glucanotransferases that can synthesize cyclo-{→6)-α-d-Glcp-(1→6)-α-d-Glcp-(1→6)-α-d-Glcp-(1→6)-α-d-Glcp-(1→} (CI4) from dextran were purified to homogeneity from the culture supernatant of Agreia sp. D1110 and Microbacterium trichothecenolyticum D2006. The molecular mass of both enzymes was estimated to be 86 kDa by SDS-PAGE. The glucanotransferase, named CI4-forming enzyme, from Agreia sp. exhibited the highest activity at pH 6.0 and 40 °C. The enzyme was stable on the pH range of 4.6-9.9 and up to 40 °C. On the other hand, the enzyme from M. trichothecenolyticum exhibited the highest activity at pH 5.7 and 40 °C. The enzyme was stable on the pH range of 5.0-6.9 and up to 35 °C. Both enzymes catalyzed 4 reactions, namely, intramolecular α-1,6-transglycosylation (cyclization), intermolecular α-1,6-transglycosylation, hydrolysis of CI4, and coupling reaction. Furthermore, the CI4-forming enzyme produced CI4 from α-1,6-linked glucan synthesized from starch by 6-α-glucosyltransferase. These findings will enable the production of CI4 from starch.
Collapse
Affiliation(s)
| | | | | | | | | | - Tetsuya Mori
- R&D Division, HAYASHIBARA CO., Ltd., Okayama, Japan
| | | | - Hajime Aga
- R&D Division, HAYASHIBARA CO., Ltd., Okayama, Japan
| | | |
Collapse
|
5
|
Fujita A, Kawashima A, Ota H, Watanabe H, Mori T, Nishimoto T, Aga H, Ushio S. A cyclic tetrasaccharide, cycloisomaltotetraose, was enzymatically produced from dextran and its crystal structure was determined. Carbohydr Res 2020; 496:108104. [PMID: 32795710 DOI: 10.1016/j.carres.2020.108104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/30/2020] [Accepted: 07/14/2020] [Indexed: 11/16/2022]
Abstract
Two bacterial strains isolated from soil, namely Agreia sp. D1110 and Microbacterium trichothecenolyticum D2006, were found to produce a novel oligosaccharide. The oligosaccharide was enzymatically produced from dextran using the culture supernatant of Agreia sp. D1110 or M. trichothecenolyticum D2006. LC-MS and NMR analysis identified the novel oligosaccharide as cyclo-{→6)-α-d-Glcp-(1→6)-α-d-Glcp-(1→6)-α-d-Glcp-(1→6)-α-d-Glcp-(1→}, which was named cycloisomaltotetraose, and abbreviated as CI4. CI4 was subsequently crystalized and its X-ray crystallographic structure was determined. CI4 crystals were shown to be pentahydrate, with the CI4 molecules in the crystal structure displaying a unique 3D structure, in which two glucosyl residues in the molecule were facing each other. This unique 3D structure was quite different from the 3D structure of known cyclic tetrasaccharides. This is the first report of CI4 molecules and their unique crystal structure.
Collapse
Affiliation(s)
- Akihiro Fujita
- Material Search Section, Research Unit, R&D Division, HAYASHIBARA CO., LTD., 675-1 Fujisaki, Naka-ku, Okayama, 702-8006, Japan.
| | - Akira Kawashima
- Material Search Section, Research Unit, R&D Division, HAYASHIBARA CO., LTD., 675-1 Fujisaki, Naka-ku, Okayama, 702-8006, Japan
| | - Hiromi Ota
- Advanced Science Research Center, Okayama University, 3-1-1 Tsushima-Naka, Kita-ku, Okayama, 700-8530, Japan
| | - Hikaru Watanabe
- Material Search Section, Research Unit, R&D Division, HAYASHIBARA CO., LTD., 675-1 Fujisaki, Naka-ku, Okayama, 702-8006, Japan
| | - Tetsuya Mori
- Material Search Section, Research Unit, R&D Division, HAYASHIBARA CO., LTD., 675-1 Fujisaki, Naka-ku, Okayama, 702-8006, Japan
| | - Tomoyuki Nishimoto
- Material Search Section, Research Unit, R&D Division, HAYASHIBARA CO., LTD., 675-1 Fujisaki, Naka-ku, Okayama, 702-8006, Japan
| | - Hajime Aga
- Material Search Section, Research Unit, R&D Division, HAYASHIBARA CO., LTD., 675-1 Fujisaki, Naka-ku, Okayama, 702-8006, Japan
| | - Shimpei Ushio
- Material Search Section, Research Unit, R&D Division, HAYASHIBARA CO., LTD., 675-1 Fujisaki, Naka-ku, Okayama, 702-8006, Japan
| |
Collapse
|
6
|
A novel intracellular dextranase derived from Paenibacillus sp. 598K with an ability to degrade cycloisomaltooligosaccharides. Appl Microbiol Biotechnol 2019; 103:6581-6592. [DOI: 10.1007/s00253-019-09965-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/02/2019] [Accepted: 06/04/2019] [Indexed: 10/26/2022]
|
7
|
Structural features of a bacterial cyclic α-maltosyl-(1→6)-maltose (CMM) hydrolase critical for CMM recognition and hydrolysis. J Biol Chem 2018; 293:16874-16888. [PMID: 30181215 PMCID: PMC6204909 DOI: 10.1074/jbc.ra118.004472] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/31/2018] [Indexed: 01/07/2023] Open
Abstract
Cyclic α-maltosyl-(1→6)-maltose (CMM, cyclo-{→6)-α-d-Glcp-(1→4)-α-d-Glcp-(1→6)-α-d-Glcp-(1→4)-α-d-Glcp-(1→})is a cyclic glucotetrasaccharide with alternating α-1,4 and α-1,6 linkages. CMM is composed of two maltose units and is one of the smallest cyclic glucooligosaccharides. Although CMM is resistant to usual amylases, it is efficiently hydrolyzed by CMM hydrolase (CMMase), belonging to subfamily 20 of glycoside hydrolase family 13 (GH13_20). Here, we determined the ligand-free crystal structure of CMMase from the soil-associated bacterium Arthrobacter globiformis and its structures in complex with maltose, panose, and CMM to elucidate the structural basis of substrate recognition by CMMase. The structures disclosed that although the monomer structure consists of three domains commonly adopted by GH13 and other α-amylase-related enzymes, CMMase forms a unique wing-like dimer structure. The complex structure with CMM revealed four specific subsites, namely -3', -2, -1, and +1'. We also observed that the bound CMM molecule adopts a low-energy conformer compared with the X-ray structure of a single CMM crystal, also determined here. Comparison of the CMMase active site with those in other enzymes of the GH13_20 family revealed that three regions forming the wall of the cleft, denoted PYF (Pro-203/Tyr-204/Phe-205), CS (Cys-163/Ser-164), and Y (Tyr-168), are present only in CMMase and are involved in CMM recognition. Combinations of multiple substitutions in these regions markedly decreased the activity toward CMM, indicating that the specificity for this cyclic tetrasaccharide is supported by the entire shape of the pocket. In summary, our work uncovers the mechanistic basis for the highly specific interactions of CMMase with its substrate CMM.
Collapse
|
8
|
Combined Drug Resistance Mutations Substantially Enhance Enzyme Production in Paenibacillus agaridevorans. J Bacteriol 2018; 200:JB.00188-18. [PMID: 29866810 DOI: 10.1128/jb.00188-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 05/29/2018] [Indexed: 11/20/2022] Open
Abstract
This study shows that sequential introduction of drug resistance mutations substantially increased enzyme production in Paenibacillus agaridevorans The triple mutant YT478 (rsmG Gln225→stop codon, rpsL K56R, and rpoB R485H), generated by screening for resistance to streptomycin and rifampin, expressed a 1,100-fold-larger amount of the extracellular enzyme cycloisomaltooligosaccharide glucanotransferase (CITase) than the wild-type strain. These mutants were characterized by higher intracellular S-adenosylmethionine concentrations during exponential phase and enhanced protein synthesis activity during stationary phase. Surprisingly, the maximal expression of CITase mRNA was similar in the wild-type and triple mutant strains, but the mutant showed greater CITase mRNA expression throughout the growth curve, resulting in enzyme overproduction. A metabolome analysis showed that the triple mutant YT478 had higher levels of nucleic acids and glycolysis metabolites than the wild type, indicating that YT478 mutant cells were activated. The production of CITase by the triple mutant was further enhanced by introducing a mutation conferring resistance to the rare earth element, scandium. This combined drug resistance mutation method also effectively enhanced the production of amylases, proteases, and agarases by P. agaridevorans and Streptomyces coelicolor This method also activated the silent or weak expression of the P. agaridevorans CITase gene, as shown by comparisons of the CITase gene loci of P. agaridevorans T-3040 and another cycloisomaltooligosaccharide-producing bacterium, Paenibacillus sp. strain 598K. The simplicity and wide applicability of this method should facilitate not only industrial enzyme production but also the identification of dormant enzymes by activating the expression of silent or weakly expressed genes.IMPORTANCE Enzyme use has become more widespread in industry. This study evaluated the molecular basis and effectiveness of ribosome engineering in markedly enhancing enzyme production (>1,000-fold). This method, due to its simplicity, wide applicability, and scalability for large-scale production, should facilitate not only industrial enzyme production but also the identification of novel enzymes, because microorganisms contain many silent or weakly expressed genes which encode novel antibiotics or enzymes. Furthermore, this study provides a new mechanism for strain improvement, with a consistent rather than transient high expression of the key gene(s) involved in enzyme production.
Collapse
|
9
|
Tagami T, Miyano E, Sadahiro J, Okuyama M, Iwasaki T, Kimura A. Two Novel Glycoside Hydrolases Responsible for the Catabolism of Cyclobis-(1→6)-α-nigerosyl. J Biol Chem 2016; 291:16438-47. [PMID: 27302067 DOI: 10.1074/jbc.m116.727305] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Indexed: 11/06/2022] Open
Abstract
The actinobacterium Kribbella flavida NBRC 14399(T) produces cyclobis-(1→6)-α-nigerosyl (CNN), a cyclic glucotetraose with alternate α-(1→6)- and α-(1→3)-glucosidic linkages, from starch in the culture medium. We identified gene clusters associated with the production and intracellular catabolism of CNN in the K. flavida genome. One cluster encodes 6-α-glucosyltransferase and 3-α-isomaltosyltransferase, which are known to coproduce CNN from starch. The other cluster contains four genes annotated as a transcriptional regulator, sugar transporter, glycoside hydrolase family (GH) 31 protein (Kfla1895), and GH15 protein (Kfla1896). Kfla1895 hydrolyzed the α-(1→3)-glucosidic linkages of CNN and produced isomaltose via a possible linear tetrasaccharide. The initial rate of hydrolysis of CNN (11.6 s(-1)) was much higher than that of panose (0.242 s(-1)), and hydrolysis of isomaltotriose and nigerose was extremely low. Because Kfla1895 has a strong preference for the α-(1→3)-isomaltosyl moiety and effectively hydrolyzes the α-(1→3)-glucosidic linkage, it should be termed 1,3-α-isomaltosidase. Kfla1896 effectively hydrolyzed isomaltose with liberation of β-glucose, but displayed low or no activity toward CNN and the general GH15 enzyme substrates such as maltose, soluble starch, or dextran. The kcat/Km for isomaltose (4.81 ± 0.18 s(-1) mm(-1)) was 6.9- and 19-fold higher than those for panose and isomaltotriose, respectively. These results indicate that Kfla1896 is a new GH15 enzyme with high substrate specificity for isomaltose, suggesting the enzyme should be designated an isomaltose glucohydrolase. This is the first report to identify a starch-utilization pathway that proceeds via CNN.
Collapse
Affiliation(s)
- Takayoshi Tagami
- From the College of Agriculture, Food and Environment Sciences, Rakuno Gakuen University, Ebetsu 069-8501 and
| | - Eri Miyano
- the Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Juri Sadahiro
- the Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Masayuki Okuyama
- the Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Tomohito Iwasaki
- From the College of Agriculture, Food and Environment Sciences, Rakuno Gakuen University, Ebetsu 069-8501 and
| | - Atsuo Kimura
- the Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| |
Collapse
|