1
|
Wang J, Yan YT, Fu SZ, Peng B, Bao LL, Zhang YL, Hu JH, Zeng ZP, Geng DH, Gao ZP. Anti-Influenza Virus (H5N1) Activity Screening on the Phloroglucinols from Rhizomes of Dryopteris crassirhizoma. Molecules 2017; 22:E431. [PMID: 28282885 PMCID: PMC6155227 DOI: 10.3390/molecules22030431] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 02/28/2017] [Accepted: 03/02/2017] [Indexed: 11/17/2022] Open
Abstract
For screening the active phloroglucinols on influenza virus (H5N1) from Dryopteris crassirhizoma NaKai, a database was established including twenty-three phloroglucinols that had been isolated from Dryopteris crassirhizoma. Their inhibitory effect on the neuraminidase (NA) of influenza virus H5N1 was screened by molecular docking. As a result, three candidates were selected. The rhizomes of D. crassirhizoma were subjected to isolation and purification processes to obtain the inhibitor candidates. Thirteen phloroglucinols were obtained, including three selected candidates and two new phloroglucinols. The five phloroglucinols were investigated for their inhibitory activity on NA in vitro. The results showed that dryocrassin ABBA and filixic acid ABA exhibited inhibitory effects on NA with IC50 as 18.59 ± 4.53 and 29.57 ± 2.48 μM, respectively, and the other three phloroglucinols showed moderate inhibitory activity. Moreover, the anti-influenza virus (H5N1) activity and cytotoxicity of dryocrassin ABBA and filixic acid ABA were tested on Madin-Darby canine kidney (MDCK) cells with the cell counting kit-8 (CCK8) method. The results confirmed that dryocrassin ABBA exhibited an inhibitory activity with low cytotoxicity (TC50 > 400 μM) against influenza virus (H5N1) which will have to be investigated in further detail. In conclusion, phloroglucinols from D. crassirhizoma were shown to have anti-influenza virus activity, and especially dryocrassin ABBA, one of the phloroglucinols, may have the potential to control influenza virus (H5N1) infection.
Collapse
Affiliation(s)
- Juan Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China.
| | - Yan-Tao Yan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China.
| | - Shen-Zhen Fu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China.
| | - Bing Peng
- Beijing Institute of Traditional Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing 100000, China.
| | - Lin-Lin Bao
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS&PUMC), Beijing 100730, China.
| | - Yan-Ling Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China.
| | - Jing-Hong Hu
- School of Basic Medical Science, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Zu-Ping Zeng
- Beijing Institute of Traditional Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing 100000, China.
| | - Dong-Hao Geng
- College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Zeng-Ping Gao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China.
| |
Collapse
|
2
|
Kozielewicz P, Paradowska K, Erić S, Wawer I, Zloh M. Insights into mechanism of anticancer activity of pentacyclic oxindole alkaloids of Uncaria tomentosa by means of a computational reverse virtual screening and molecular docking approach. MONATSHEFTE FUR CHEMIE 2014. [DOI: 10.1007/s00706-014-1212-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
3
|
Thompson AJ, Dabin J, Iglesias-Fernández J, Ardèvol A, Dinev Z, Williams SJ, Bande O, Siriwardena A, Moreland C, Hu TC, Smith DK, Gilbert HJ, Rovira C, Davies GJ. The Reaction Coordinate of a Bacterial GH47 α-Mannosidase: A Combined Quantum Mechanical and Structural Approach. Angew Chem Int Ed Engl 2012; 51:10997-1001. [DOI: 10.1002/anie.201205338] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Indexed: 11/10/2022]
|
4
|
Thompson AJ, Dabin J, Iglesias-Fernández J, Ardèvol A, Dinev Z, Williams SJ, Bande O, Siriwardena A, Moreland C, Hu TC, Smith DK, Gilbert HJ, Rovira C, Davies GJ. The Reaction Coordinate of a Bacterial GH47 α-Mannosidase: A Combined Quantum Mechanical and Structural Approach. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201205338] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
5
|
Rönnols J, Burkhardt A, Cumpstey I, Widmalm G. pKa-Determination and Conformational Studies by NMR Spectroscopy of D-Altrose-Containing and other Pseudodisaccharides as Glycosidase Inhibitor Candidates. European J Org Chem 2011. [DOI: 10.1002/ejoc.201101385] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
6
|
Agostino M, Jene C, Boyle T, Ramsland PA, Yuriev E. Molecular docking of carbohydrate ligands to antibodies: structural validation against crystal structures. J Chem Inf Model 2010; 49:2749-60. [PMID: 19994843 DOI: 10.1021/ci900388a] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cell surface glycoproteins play vital roles in cellular homeostasis and disease. Antibody recognition of glycosylation on different cells and pathogens is critically important for immune surveillance. Conversely, adverse immune reactions resulting from antibody-carbohydrate interactions have been implicated in the development of autoimmune diseases and impact areas such as xenotransplantation and cancer treatment. Understanding the nature of antibody-carbohydrate interactions and the method by which saccharides fit into antibody binding sites is important in understanding the recognition process. In silico techniques offer attractive alternatives to experimental methods (X-ray crystallography and NMR) for the study of antibody-carbohydrate complexes. In particular, molecular docking provides information about protein-ligand interactions in systems that are difficult to study with experimental techniques. Before molecular docking can be used to investigate antibody-carbohydrate complexes, validation of an appropriate docking method is required. In this study, four popular docking programs, Glide, AutoDock, GOLD, and FlexX, were assessed for their ability to accurately dock carbohydrates to antibodies. Comparison of top ranking poses with crystal structures highlighted the strengths and weaknesses of these programs. Rigid docking, in which the protein conformation remains static, and flexible docking, where both the protein and ligand are treated as flexible, were compared. This study has revealed that generally molecular docking of carbohydrates to antibodies has been performed best by Glide.
Collapse
Affiliation(s)
- Mark Agostino
- Medicinal Chemistry and Drug Action, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | | | | | | | | |
Collapse
|
7
|
Vaaje-Kolstad G, Farkas V, Fincher GB, Hrmova M. Barley xyloglucan xyloglucosyl transferases bind xyloglucan-derived oligosaccharides in their acceptor-binding regions in multiple conformational states. Arch Biochem Biophys 2010; 496:61-8. [PMID: 20117073 DOI: 10.1016/j.abb.2010.01.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 01/21/2010] [Accepted: 01/24/2010] [Indexed: 11/30/2022]
Abstract
Three barley xyloglucan endotransglycosylases (HvXETs), known as xyloglucan xyloglucosyl transferases (EC 2.4.1.207), were subjected to kinetic and computational docking studies. The k(cat) x K(m)(-1) values with the reduced [3H]-labelled XXXG, XXLG/XLXG and XLLG acceptor substrates were 0.02 x 10(-2), 0.1 x 10(-2) and 3.2 x 10(-2) s(-1) microM(-1), while the K(m) constants were 10.6, 8.6 and 5.3 mM, obtained for HvXET3, HvXET4 and HvXET6, respectively. Docking of XLLG in acceptor-binding regions revealed that at least two conformational states were likely to participate in all isoforms. The assessments of kinetic and computational data indicated that the disposition of aromatic residues at the entrance to the active sites and the flexibility of proximal COOH-terminal loops could orient acceptors more or less favourably during binding, thus leading to tighter or weaker K(m) constants. The data suggested that binding of acceptors in HvXETs is guided by contributions from the conserved residues in the active sites and by the of neighbouring loops.
Collapse
Affiliation(s)
- Gustav Vaaje-Kolstad
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1432 As, Norway
| | | | | | | |
Collapse
|
8
|
Veld MAJ, Fransson L, Palmans ARA, Meijer EW, Hult K. Lactone Size Dependent Reactivity inCandida AntarcticaLipase B: A Molecular Dynamics and Docking Study. Chembiochem 2009; 10:1330-4. [DOI: 10.1002/cbic.200900128] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
Petersen L, Ardèvol A, Rovira C, Reilly PJ. Mechanism of Cellulose Hydrolysis by Inverting GH8 Endoglucanases: A QM/MM Metadynamics Study. J Phys Chem B 2009; 113:7331-9. [DOI: 10.1021/jp811470d] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Luis Petersen
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, Computer Simulation and Modeling Laboratory (CoSMoLab), Parc Científic de Barcelona, 08028 Barcelona, Spain, Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, 08028 Barcelona, Spain, and Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - Albert Ardèvol
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, Computer Simulation and Modeling Laboratory (CoSMoLab), Parc Científic de Barcelona, 08028 Barcelona, Spain, Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, 08028 Barcelona, Spain, and Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - Carme Rovira
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, Computer Simulation and Modeling Laboratory (CoSMoLab), Parc Científic de Barcelona, 08028 Barcelona, Spain, Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, 08028 Barcelona, Spain, and Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - Peter J. Reilly
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, Computer Simulation and Modeling Laboratory (CoSMoLab), Parc Científic de Barcelona, 08028 Barcelona, Spain, Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, 08028 Barcelona, Spain, and Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| |
Collapse
|
10
|
Cantú D, Nerinckx W, Reilly PJ. Theory and computation show that Asp463 is the catalytic proton donor in human endoplasmic reticulum α-(1→2)-mannosidase I. Carbohydr Res 2008; 343:2235-42. [DOI: 10.1016/j.carres.2008.05.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Revised: 05/07/2008] [Accepted: 05/13/2008] [Indexed: 11/25/2022]
|
11
|
Abstract
Oligo- and polysaccharides are infamous for being extremely flexible molecules, populating a series of well-defined rotational isomeric states under physiological conditions. Characterization of this heterogeneous conformational ensemble has been a major obstacle impeding high-resolution structure determination of carbohydrates and acting as a bottleneck in the effort to understand the relationship between the carbohydrate structure and function. This challenge has compelled the field to develop and apply theoretical and experimental methods that can explore conformational ensembles by both capturing and deconvoluting the structural and dynamic properties of carbohydrates. This review focuses on computational approaches that have been successfully used in combination with experiment to detail the three-dimensional structure of carbohydrates in a solution and in a complex with proteins. In addition, emerging experimental techniques for three-dimensional structural characterization of carbohydrate-protein complexes and future challenges in the field of structural glycobiology are discussed. The review is divided into five sections: (1) The complexity and plasticity of carbohydrates, (2) Predicting carbohydrate-protein interactions, (3) Calculating relative and absolute binding free energies for carbohydrate-protein complexes, (4) Emerging and evolving techniques for experimental characterization of carbohydrate-protein structures, and (5) Current challenges in structural glycoscience.
Collapse
Affiliation(s)
- Mari L DeMarco
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602-4712, USA
| | - Robert J Woods
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602-4712, USA
| |
Collapse
|
12
|
Lobsanov YD, Yoshida T, Desmet T, Nerinckx W, Yip P, Claeyssens M, Herscovics A, Howell PL. Modulation of activity by Arg407: structure of a fungal alpha-1,2-mannosidase in complex with a substrate analogue. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2008; 64:227-36. [PMID: 18323617 DOI: 10.1107/s0907444907065572] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2007] [Accepted: 12/04/2007] [Indexed: 11/10/2022]
Abstract
Class I alpha-mannosidases (glycoside hydrolase family GH47) play key roles in the maturation of N-glycans and the ER-associated degradation of unfolded glycoproteins. The 1.95 A resolution structure of a fungal alpha-1,2-mannosidase in complex with the substrate analogue methyl-alpha-D-lyxopyranosyl-(1',2)-alpha-D-mannopyranoside (LM) shows the intact disaccharide spanning the -1/+1 subsites, with the D-lyxoside ring in the -1 subsite in the 1C4 chair conformation, and provides insight into the mechanism of catalysis. The absence of the C5' hydroxymethyl group on the D-lyxoside moiety results in the side chain of Arg407 adopting two alternative conformations: the minor one interacting with Asp375 and the major one interacting with both the D-lyxoside and the catalytic base Glu409, thus disrupting its function. Chemical modification of Asp375 has previously been shown to inactivate the enzyme. Taken together, the data suggest that Arg407, which belongs to the conserved sequence motif RPExxE, may act to modulate the activity of the enzyme. The proposed mechanism for modulating the activity is potentially a general mechanism for this superfamily.
Collapse
Affiliation(s)
- Yuri D Lobsanov
- Program in Molecular Structure and Function, Research Institute, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Fushinobu S, Mertz B, Hill AD, Hidaka M, Kitaoka M, Reilly PJ. Computational analyses of the conformational itinerary along the reaction pathway of GH94 cellobiose phosphorylase. Carbohydr Res 2008; 343:1023-33. [PMID: 18346721 DOI: 10.1016/j.carres.2008.02.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Revised: 02/25/2008] [Accepted: 02/26/2008] [Indexed: 10/22/2022]
Abstract
GH94 cellobiose phosphorylase (CBP) catalyzes the phosphorolysis of cellobiose into alpha-D-glucose 1-phosphate (G1P) and D-glucose with inversion of anomeric configuration. The complex crystal structure of CBP from Cellvibrio gilvus had previously been determined; glycerol, glucose, and phosphate are bound to subsites -1, +1, and the anion binding site, respectively. We performed computational analyses to elucidate the conformational itinerary along the reaction pathway of this enzyme. autodock was used to dock cellobiose with its glycon glucosyl residue in various conformations and with its aglycon glucosyl residue in the low-energy 4C1 conformer. An oxocarbenium ion-like glucose molecule mimicking the transition state was also docked. Based on the clustering analysis, docked energies, and comparison with the crystallographic ligands, we conclude that the reaction proceeds from 1S3 as the pre-transition state conformer (Michaelis complex) via E3 as the transition state candidate to 4C1 as the G1P product conformer. The predicted reaction pathway of the inverting phosphorylase is similar to that proposed for the first-half glycosylation reaction of retaining cellulases, but is different from those for inverting cellulases. NAMD was used to simulate molecular dynamics of the enzyme. The 1S3 pre-transition state conformer is highly stable compared with other conformers, and a conformational change from 4C1 to 1,4B was observed.
Collapse
Affiliation(s)
- Shinya Fushinobu
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
Molecular docking is a key tool in structural molecular biology and computer-assisted drug design. The goal of ligand-protein docking is to predict the predominant binding mode(s) of a ligand with a protein of known three-dimensional structure. Successful docking methods search high-dimensional spaces effectively and use a scoring function that correctly ranks candidate dockings. Docking can be used to perform virtual screening on large libraries of compounds, rank the results, and propose structural hypotheses of how the ligands inhibit the target, which is invaluable in lead optimization. The setting up of the input structures for the docking is just as important as the docking itself, and analyzing the results of stochastic search methods can sometimes be unclear. This chapter discusses the background and theory of molecular docking software, and covers the usage of some of the most-cited docking software.
Collapse
Affiliation(s)
- Garrett M Morris
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| | | |
Collapse
|
15
|
Mertz B, Hill AD, Mulakala C, Reilly PJ. Automated docking to explore subsite binding by glycoside hydrolase family 6 cellobiohydrolases and endoglucanases. Biopolymers 2007; 87:249-60. [PMID: 17724729 DOI: 10.1002/bip.20831] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cellooligosaccharides were computationally docked using AutoDock into the active sites of the glycoside hydrolase Family 6 enzymes Hypocrea jecorina (formerly Trichoderma reesei) cellobiohydrolase and Thermobifida fusca endoglucanase. Subsite -2 exerts the greatest intermolecular energy in binding beta-glucosyl residues, with energies progressively decreasing to either side. Cumulative forces imparting processivity exerted by these two enzymes are significantly less than by the equivalent glycoside hydrolase Family 7 enzymes studied previously. Putative subsites -4, -3, +3, and +4 exist in H. jecorina cellobiohydrolase, along with putative subsites -4, -3, and +3 in T. fusca endoglucanase, but they are less important than subsites -2, -1, +1, and +2. In general, binding adds 3-7 kcal/mol to ligand intramolecular energies because of twisting of scissile glycosidic bonds. Distortion of beta-glucosyl residues to the (2)S(O) conformation by binding in subsite -1 adds approximately 7 kcal/mol to substrate intramolecular energies.
Collapse
Affiliation(s)
- Blake Mertz
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
| | | | | | | |
Collapse
|
16
|
Forli S, Botta M. Lennard-Jones potential and dummy atom settings to overcome the AUTODOCK limitation in treating flexible ring systems. J Chem Inf Model 2007; 47:1481-92. [PMID: 17585754 DOI: 10.1021/ci700036j] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Here, we present a setting-up procedure of AutoDock parameters that allows the management of cycle and macrocycle flexibility during the docking process. In particular, the glue dummy atom type is introduced into calculations, and a novel empirical pseudo-Lennard-Jones potential function is applied to describe the intramolecular interactions occurring between two glue dummy atoms. The reliability of such an original protocol is tested by evaluation of 21 cyclic ligands in the corresponding binding site. As a result, the binding mode of 17 ligands is well-reproduced with respect to the X-ray crystallographic structure, with an root-mean-square deviation lower than 2 Angstrom for 15 of them.
Collapse
Affiliation(s)
- Stefano Forli
- Dipartimento Farmaco Chimico Tecnologico, Università degli Studi di Siena, via Alcide de Gasperi 2, 53100 Siena, Italy.
| | | |
Collapse
|
17
|
Hill AD, Reilly PJ. Puckering Coordinates of Monocyclic Rings by Triangular Decomposition. J Chem Inf Model 2007; 47:1031-5. [PMID: 17367125 DOI: 10.1021/ci600492e] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We describe a new method of describing the pucker of an N-member monocyclic ring using N - 3 parameters. To accomplish this, three ring atoms define a reference plane, and the remainder of the ring is decomposed into triangular flaps. The angle of incidence for each flap upon the reference plane is then measured. The combination of these angles is characteristic of the ring's pucker. This puckering coordinate system is compared to existing reduced parameter systems to describe rings using a cyclohexane molecule. We show that this method has the same descriptive power of previous systems while offering advantages in molecular simulations.
Collapse
Affiliation(s)
- Anthony D Hill
- Department of Chemical and Biological Engineering, 2114 Sweeney Hall, Iowa State University, Ames, Iowa 50011, USA
| | | |
Collapse
|
18
|
Mulakala C, Nerinckx W, Reilly PJ. The fate of β-d-mannopyranose after its formation by endoplasmic reticulum α-(1→2)-mannosidase I catalysis. Carbohydr Res 2007; 342:163-9. [PMID: 17157281 DOI: 10.1016/j.carres.2006.11.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Revised: 10/26/2006] [Accepted: 11/07/2006] [Indexed: 11/21/2022]
Abstract
The automated docking program AutoDock was used to dock all 38 characteristic beta-D-mannopyranose ring conformers into the active site of the yeast endoplasmic reticulum alpha-(1-->2)-mannosidase I, a Family 47 glycoside hydrolase that converts Man9GlcNAc2 to Man8GlcNAc2. The subject of this work is to establish the conformational pathway that allows the cleaved glycon product to leave the enzyme active site and eventually reach the ground-state conformation. Twelve of the 38 conformers optimally dock in the active site where the inhibitors 1-deoxymannonojirimycin and kifunensine are found in enzyme crystal structures. A further 23 optimally dock in a second site on the side of the active-site well, while three dock outside the active-site cavity. It appears, through analysis of the internal energies of different ring conformations, of intermolecular energies between the ligands and enzyme, and of forces exerted on the ligands by the enzyme, that beta-D-mannopyranose follows the path 3E-->1C4-->1H2-->B2,5 before being expelled by the enzyme. The highly conserved second site that strongly binds beta-D-mannopyranose-4C1 may exist to prevent competitive inhibition by the product, and is worthy of further investigation.
Collapse
Affiliation(s)
- Chandrika Mulakala
- Department of Chemical and Biological Engineering, 2114 Sweeney Hall, Iowa State University, Ames, IA 50011, USA
| | | | | |
Collapse
|
19
|
Monclus MDLA, Cesari A, Cabrillana ME, Borelli PV, Vincenti AE, Burgos MH, Fornés MW. Mouse Sperm Rosette: Assembling During Epididymal Transit, in vitro Disassemble, and Oligosaccharide Participation in the Linkage Material. Anat Rec (Hoboken) 2007; 290:814-24. [PMID: 17541971 DOI: 10.1002/ar.20555] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In many mammals, sperm associations had been observed, but not in the mouse. In this work, mouse sperm rosettes are morphologically described inside the epididymis and during its dissolution in a culture medium. Also characterized are the saccharides present in the linking material. Sperm association and other epididymal actions are supported by sperm during epididymal transit and are verified at the caudal region, suggesting a relation between epididymal transit and sperm maturation. In drops of epididymal content obtained from distal (cauda), but not from proximal (caput and corpus) regions; dissolved in culture medium, rosettes appear to be 10 to 15 motile sperm joined by their heads. After 3 min, sperm progressively detach, disassembling the rosette. These structures are studied by several techniques, including optic, electronic (scanning electron microscopy and transmission electron microscopy), and video microscopy. At the ultrastructural level, a dense network of electron-dense material was observed between sperm heads, joining them. Based on previous works in rat, several lectins were used to characterize the type of saccharides present in this linking material. To avoid the contact between sperm and epididymal fluid from distal region--that probably exerts an influence on sperm association--a ligature was placed between caput and corpus. This epididymal content isolated from caput did not display any rosettes after 28 days.
Collapse
Affiliation(s)
- María de los Angeles Monclus
- Instituto de Histología y Embriología de Mendoza (IHEM), Histology and Embryology Area, Department of Morphology and Physiology, School of Medicine, National University of Cuyo-CONICET, Mendoza, Argentina.
| | | | | | | | | | | | | |
Collapse
|