1
|
Haque A, Alenezi KM, Khan MWA, Soury R, Khan MS, Ahamad S, Ahmad S, Gupta D. In silico evaluation of 4-thiazolidinone-based inhibitors against the receptor for advanced glycation end products (RAGE). J Biomol Struct Dyn 2025; 43:985-996. [PMID: 38063048 DOI: 10.1080/07391102.2023.2290621] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/10/2023] [Indexed: 01/01/2025]
Abstract
Non-enzymatic glycation of biomolecules by reducing sugars led to several products, including the advanced glycation end products (AGEs), the accumulation of which has been linked to various life-threatening diseases. The binding of AGEs to their respective protein receptors for advanced glycation end products (RAGE) can initiate a cascade of reactions, which may alter physiological conditions. The present work investigates the potential of 4-thiazolidinones as RAGE inhibitors. We performed an extensive computational study to identify the structural requirements needed to act as RAGE inhibitors. To achieve this goal, 4-thiazolidinone-based compounds available in PubChem, ZINC15, ChEMBL, and ChEBI databases were screened against RAGE (PDB: 4LP5), leading to the identification of top five drug-like candidates with a high binding affinity to RAGE V-domain catalytic region. Drug likeness, absorption, distribution, metabolism, excretion, and toxicity (ADMET) of the top-scoring compounds have been studied and discussed. Global molecular descriptors, chemical reactivity, hardness, softness, etc., have been estimated. Finally, molecular dynamics (MD) simulations at 100 ns were carried out to check the stability and other properties. Overall, we believe that the identified compounds can potentially attenuate RAGE-AGE interactions.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ashanul Haque
- Department of Chemistry, College of Science, University of Ha'il, Ha'il, Saudi Arabia
- Medical and Diagnostic Research Centre, University of Ha'il, Hail, Saudi Arabia
| | - Khalaf M Alenezi
- Department of Chemistry, College of Science, University of Ha'il, Ha'il, Saudi Arabia
- Medical and Diagnostic Research Centre, University of Ha'il, Hail, Saudi Arabia
| | - Mohd Wajid A Khan
- Department of Chemistry, College of Science, University of Ha'il, Ha'il, Saudi Arabia
- Medical and Diagnostic Research Centre, University of Ha'il, Hail, Saudi Arabia
| | - Raoudha Soury
- Department of Chemistry, College of Science, University of Ha'il, Ha'il, Saudi Arabia
- Medical and Diagnostic Research Centre, University of Ha'il, Hail, Saudi Arabia
| | - Muhammad S Khan
- Department of Chemistry, College of Science, Sultan Qaboos University, Muscat, Oman
| | - Shahzaib Ahamad
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Shahnawaz Ahmad
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Dinesh Gupta
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| |
Collapse
|
2
|
Khodair AI, Alzahrani FM, Awad MK, Al-Issa SA, Al-Hazmi GH, Nafie MS. Design, Synthesis, Computational Investigations, and Antitumor Evaluation of N-Rhodanine Glycosides Derivatives as Potent DNA Intercalation and Topo II Inhibition against Cancer Cells. ACS OMEGA 2023; 8:13300-13314. [PMID: 37065038 PMCID: PMC10099454 DOI: 10.1021/acsomega.3c00641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
Nitrogen and sulfur glycosylation was carried out via the reaction of rhodanine (1) with α-acetobromoglucose 3 under basic conditions. Deacetylation of the protected nitrogen nucleoside 4 was performed with CH3ONa in CH3OH without cleavage of the rhodanine ring to afford the deprotected nitrogen nucleoside 6. Further, deacetylation of the protected sulfur nucleoside 5 was performed with CH3ONa in CH3OH with the cleavage of the rhodanine ring to give the hydrolysis product 7. The protected nitrogen nucleosides 11a-f were produced by condensing the protected nitrogen nucleoside 4 with the aromatic aldehydes 10a-f in C2H5OH while using morpholine as a secondary amine catalyst. Deacetylation of the protected nitrogen nucleosides 11a-f was performed with NaOCH3/CH3OH without cleavage of the rhodanine ring to afford the deprotected nitrogen nucleosides 12a-f. NMR spectroscopy was used to designate the anomers' configurations. To examine the electrical and geometric properties derived from the stable structure of the examined compounds, molecular modeling and DFT calculations using the B3LYP/6-31+G (d,p) level were carried out. The quantum chemical descriptors and experimental findings showed a strong connection. The IC50 values for most compounds were very encouraging when evaluated against MCF-7, HepG2, and A549 cancer cells. Interestingly, IC50 values for 11a, 12b, and 12f were much lower than those for Doxorubicin (7.67, 8.28, 6.62 μM): (3.7, 8.2, 9.8 μM), (3.1, 13.7, 21.8 μM), and (7.17, 2.2, 4.5 μM), respectively. Against Topo II inhibition and DNA intercalation, when compared to Dox (IC50 = 9.65 and 31.27 μM), compound 12f showed IC50 values of 7.3 and 18.2 μM, respectively. In addition, compound 12f induced a 65.6-fold increase in the rate of apoptotic cell death in HepG2 cells, with the cell cycle being arrested in the G2/M phase as a result. Additionally, it upregulated the apoptosis-mediated genes of P53, Bax, and caspase-3,8,9 by 9.53, 8.9, 4.16, 1.13, and 8.4-fold change, while it downregulated the Bcl-2 expression by 0.13-fold. Therefore, glucosylated Rhodanines may be useful as potential therapeutic candidates against cancer because of their topoisomerase II and DNA intercalation activity.
Collapse
Affiliation(s)
- Ahmed I. Khodair
- Chemistry
Department, Faculty of Science, Kafrelsheikh
University, 33516 Kafrelsheikh, Egypt
| | - Fatimah M. Alzahrani
- Department
of Chemistry, College of Science, Princess
Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Mohamed K. Awad
- Theoretical
Applied Chemistry Unit (TACU), Chemistry Department, Faculty of Science, Tanta University, 6632110 Tanta, Egypt
| | - Siham A. Al-Issa
- Department
of Chemistry, College of Science, Princess
Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Ghaferah H. Al-Hazmi
- Department
of Chemistry, College of Science, Princess
Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Mohamed S. Nafie
- Chemistry
Department (Biochemistry program), Faculty of Science, Suez Canal University, 41522 Ismailia, Egypt
| |
Collapse
|
3
|
Zhang D, Markoulides MS, Stepanovs D, Rydzik AM, El-Hussein A, Bon C, Kamps JJAG, Umland KD, Collins PM, Cahill ST, Wang DY, von Delft F, Brem J, McDonough MA, Schofield CJ. Structure activity relationship studies on rhodanines and derived enethiol inhibitors of metallo-β-lactamases. Bioorg Med Chem 2018; 26:2928-2936. [PMID: 29655609 PMCID: PMC6008492 DOI: 10.1016/j.bmc.2018.02.043] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 02/20/2018] [Accepted: 02/22/2018] [Indexed: 12/14/2022]
Abstract
Metallo-β-lactamases (MBLs) enable bacterial resistance to almost all classes of β-lactam antibiotics. We report studies on enethiol containing MBL inhibitors, which were prepared by rhodanine hydrolysis. The enethiols inhibit MBLs from different subclasses. Crystallographic analyses reveal that the enethiol sulphur displaces the di-Zn(II) ion bridging 'hydrolytic' water. In some, but not all, cases biophysical analyses provide evidence that rhodanine/enethiol inhibition involves formation of a ternary MBL enethiol rhodanine complex. The results demonstrate how low molecular weight active site Zn(II) chelating compounds can inhibit a range of clinically relevant MBLs and provide additional evidence for the potential of rhodanines to be hydrolysed to potent inhibitors of MBL protein fold and, maybe, other metallo-enzymes, perhaps contributing to the complex biological effects of rhodanines. The results imply that any medicinal chemistry studies employing rhodanines (and related scaffolds) as inhibitors should as a matter of course include testing of their hydrolysis products.
Collapse
Affiliation(s)
- Dong Zhang
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Marios S Markoulides
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Dmitrijs Stepanovs
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Anna M Rydzik
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Ahmed El-Hussein
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom; The National Institute of Laser Enhanced Science, Cairo University, Egypt
| | - Corentin Bon
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Jos J A G Kamps
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Klaus-Daniel Umland
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Patrick M Collins
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Samuel T Cahill
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - David Y Wang
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Frank von Delft
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom; Structural Genomics Consortium (SGC), University of Oxford, Oxford, OX3 7DQ, UK; (e)Department of Biochemistry, University of Johannesburg, Auckland Park, 2006, South Africa
| | - Jürgen Brem
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Michael A McDonough
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Christopher J Schofield
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom.
| |
Collapse
|