1
|
Zhao Y, Vanderkooi S, Kan FWK. The role of oviduct-specific glycoprotein (OVGP1) in modulating biological functions of gametes and embryos. Histochem Cell Biol 2022; 157:371-388. [PMID: 34993641 PMCID: PMC8979936 DOI: 10.1007/s00418-021-02065-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2021] [Indexed: 01/13/2023]
Abstract
Diverse lines of evidence indicate that the mammalian oviduct makes important contributions to the complex process of reproduction other than being simply a conduit for the transport of gametes and embryos. The cumulative synthesis and transport of proteins secreted by oviductal secretory cells into the oviductal lumen create a microenvironment supporting important reproductive events, including sperm capacitation, fertilization, and early embryo development. Among the components that have been identified in the oviductal fluid is a family of glycosylated proteins known collectively as oviduct-specific glycoprotein (OVGP1) or oviductin. OVGP1 has been identified in several mammalian species, including humans. The present review summarizes the work carried out, in various mammalian species, by many research groups revealing the synthesis and secretion of OVGP1, its fate in the female reproductive tract upon secretion by the oviductal epithelium, and its role in modulating biological functions of gametes and embryos. The production and functions of recombinant human OVGP1 and recombinant OVGP1 of other mammalian species are also discussed. Some of the findings obtained with immunocytochemistry will be highlighted in the present review. It is hoped that the findings obtained from recent studies carried out with recombinant OVGP1 from various species will rekindle researchers’ interest in pursuing further the role of the oviductal microenvironment, of which OVGP1 is a major component, in contributing to the successful occurrence of early reproductive events, and the potential use of OVGP1 in improving the current assisted reproductive technology in alleviating infertility.
Collapse
Affiliation(s)
- Yuewen Zhao
- Department of Biomedical and Molecular Sciences, Faculty of Health Sciences, Queen's University, Kingston, ON, K7L 3N, Canada
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology and Reproductive Sciences, Yale Fertility Center, Yale University, Orange, CT, 06477, USA
| | - Sydney Vanderkooi
- Department of Biomedical and Molecular Sciences, Faculty of Health Sciences, Queen's University, Kingston, ON, K7L 3N, Canada
| | - Frederick W K Kan
- Department of Biomedical and Molecular Sciences, Faculty of Health Sciences, Queen's University, Kingston, ON, K7L 3N, Canada.
| |
Collapse
|
2
|
The Glycoprotease CpaA Secreted by Medically Relevant Acinetobacter Species Targets Multiple O-Linked Host Glycoproteins. mBio 2020; 11:mBio.02033-20. [PMID: 33024038 PMCID: PMC7542363 DOI: 10.1128/mbio.02033-20] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
CpaA is a glycoprotease expressed by members of the Acinetobacter baumannii-calcoaceticus complex, and it is the first bona fide secreted virulence factor identified in these species. Here, we show that CpaA cleaves multiple targets precisely at O-glycosylation sites preceded by a Pro residue. This feature, together with the observation that sialic acid does not impact CpaA activity, makes this enzyme an attractive tool for the analysis of O-linked human protein for biotechnical and diagnostic purposes. Previous work identified proteins involved in blood coagulation as targets of CpaA. Our work broadens the set of targets of CpaA, pointing toward additional roles in bacterium-host interactions. We propose that CpaA belongs to an expanding class of functionally defined glycoproteases that targets multiple O-linked host glycoproteins. Glycans decorate proteins and affect their biological function, including protection against proteolytic degradation. However, pathogenic, and commensal bacteria have evolved specific glycoproteases that overcome the steric impediment posed by carbohydrates, cleaving glycoproteins precisely at their glycosylation site(s). Medically relevant Acinetobacter strains employ their type II secretion system (T2SS) to secrete the glycoprotease CpaA, which contributes to virulence. Previously, CpaA was shown to cleave two O-linked glycoproteins, factors V and XII, leading to reduced blood coagulation. In this work, we show that CpaA cleaves a broader range of O-linked human glycoproteins, including several glycoproteins involved in complement activation, such as CD55 and CD46. However, only CD55 was removed from the cell surface, while CD46 remained unaltered during the Acinetobacter nosocomialis infection assay. We show that CpaA has a unique consensus target sequence that consists of a glycosylated serine or threonine residue after a proline residue (P-S/T), and its activity is not affected by sialic acids. Molecular modeling and mutagenesis analysis of CpaA suggest that the indole ring of Trp493 and the ring of the Pro residue in the substrate form a key interaction that contributes to CpaA sequence selectivity. Similar bacterial glycoproteases have recently gained attention as tools for proteomic analysis of human glycoproteins, and CpaA appears to be a robust and attractive new component of the glycoproteomics toolbox. Combined, our work provides insight into the function and possible application of CpaA, a member of a widespread class of broad-spectrum bacterial glycoproteases involved in host-pathogen interactions.
Collapse
|
3
|
Narimatsu Y, Joshi HJ, Nason R, Van Coillie J, Karlsson R, Sun L, Ye Z, Chen YH, Schjoldager KT, Steentoft C, Furukawa S, Bensing BA, Sullam PM, Thompson AJ, Paulson JC, Büll C, Adema GJ, Mandel U, Hansen L, Bennett EP, Varki A, Vakhrushev SY, Yang Z, Clausen H. An Atlas of Human Glycosylation Pathways Enables Display of the Human Glycome by Gene Engineered Cells. Mol Cell 2019; 75:394-407.e5. [PMID: 31227230 DOI: 10.1016/j.molcel.2019.05.017] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 02/08/2019] [Accepted: 05/10/2019] [Indexed: 11/29/2022]
Abstract
The structural diversity of glycans on cells-the glycome-is vast and complex to decipher. Glycan arrays display oligosaccharides and are used to report glycan hapten binding epitopes. Glycan arrays are limited resources and present saccharides without the context of other glycans and glycoconjugates. We used maps of glycosylation pathways to generate a library of isogenic HEK293 cells with combinatorially engineered glycosylation capacities designed to display and dissect the genetic, biosynthetic, and structural basis for glycan binding in a natural context. The cell-based glycan array is self-renewable and reports glycosyltransferase genes required (or blocking) for interactions through logical sequential biosynthetic steps, which is predictive of structural glycan features involved and provides instructions for synthesis, recombinant production, and genetic dissection strategies. Broad utility of the cell-based glycan array is demonstrated, and we uncover higher order binding of microbial adhesins to clustered patches of O-glycans organized by their presentation on proteins.
Collapse
Affiliation(s)
- Yoshiki Narimatsu
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark; GlycoDisplay ApS, Copenhagen, Denmark.
| | - Hiren J Joshi
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark
| | - Rebecca Nason
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark
| | - Julie Van Coillie
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark
| | - Richard Karlsson
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark
| | - Lingbo Sun
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark
| | - Zilu Ye
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark
| | - Yen-Hsi Chen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark; GlycoDisplay ApS, Copenhagen, Denmark
| | - Katrine T Schjoldager
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark
| | - Catharina Steentoft
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark
| | - Sanae Furukawa
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark
| | - Barbara A Bensing
- Department of Medicine, The San Francisco Veterans Affairs Medical Center, and the University of California, San Francisco, San Francisco, CA 94121, USA
| | - Paul M Sullam
- Department of Medicine, The San Francisco Veterans Affairs Medical Center, and the University of California, San Francisco, San Francisco, CA 94121, USA
| | - Andrew J Thompson
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - James C Paulson
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Christian Büll
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark; Radiotherapy and OncoImmunology Laboratory, Department of Radiotherapy, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Gosse J Adema
- Radiotherapy and OncoImmunology Laboratory, Department of Radiotherapy, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ulla Mandel
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark
| | - Lars Hansen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark
| | - Eric Paul Bennett
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark
| | - Ajit Varki
- The Glycobiology Research and Training Center and the Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, CA 92093, USA
| | - Sergey Y Vakhrushev
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark
| | - Zhang Yang
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark; GlycoDisplay ApS, Copenhagen, Denmark
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark.
| |
Collapse
|
4
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2011-2012. MASS SPECTROMETRY REVIEWS 2017; 36:255-422. [PMID: 26270629 DOI: 10.1002/mas.21471] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 01/15/2015] [Indexed: 06/04/2023]
Abstract
This review is the seventh update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2012. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, and fragmentation are covered in the first part of the review and applications to various structural types constitute the remainder. The main groups of compound are oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 36:255-422, 2017.
Collapse
Affiliation(s)
- David J Harvey
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford, OX1 3QU, UK
| |
Collapse
|
5
|
Zhao Y, Yang X, Jia Z, Reid RL, Leclerc P, Kan FWK. Recombinant human oviductin regulates protein tyrosine phosphorylation and acrosome reaction. Reproduction 2016; 152:561-573. [DOI: 10.1530/rep-16-0177] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 08/31/2016] [Indexed: 12/11/2022]
Abstract
The mammalian oviduct synthesizes and secretes a major glycoprotein known as oviductin (OVGP1), which has been shown to interact with gametes and early embryos. Here we report the use of recombinant DNA technology to produce, for the first time, the secretory form of human OVGP1 in HEK293 cells. HEK293 colonies stably expressing recombinant human OVGP1 (rHuOVGP1) were established by transfecting cells with an expression vector pCMV6-Entry constructed with OVGP1 cDNA. Large quantities of rHuOVGP1 were obtained from the stably transfected cells using the CELLSPIN cell cultivation system. A two-step purification system was carried out to yield rHuOVGP1 with a purity of >95%. Upon gel electrophoresis, purified rHuOVGP1 showed a single band corresponding to the 120–150 kDa size range of human OVGP1. Mass spectrometric analysis of the purified rHuOVGP1 revealed its identity as human oviductin. Immunofluorescence showed the binding of rHuOVGP1 to different regions of human sperm cell surfaces in various degrees of intensity. Prior treatment of sperm with 1% Triton X-100 altered the immunostaining pattern of rHuOVGP1 with an intense immunostaining over the equatorial segment and post-acrosomal region as well as along the length of the tail. Addition of rHuOVGP1 in the capacitating medium further enhanced tyrosine phosphorylation of sperm proteins in a time-dependent manner. After 4-h incubation in the presence of rHuOVGP1, the number of acrosome-reacted sperm induced by calcium ionophore significantly increased. The successful production of rHuOVGP1 can now facilitate the study of the role of human OVGP1 in fertilization and early embryo development.
Collapse
|
6
|
Thaysen-Andersen M, Chertova E, Bergamaschi C, Moh ESX, Chertov O, Roser J, Sowder R, Bear J, Lifson J, Packer NH, Felber BK, Pavlakis GN. Recombinant human heterodimeric IL-15 complex displays extensive and reproducible N- and O-linked glycosylation. Glycoconj J 2016; 33:417-33. [PMID: 26563299 PMCID: PMC7537637 DOI: 10.1007/s10719-015-9627-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 09/30/2015] [Accepted: 10/11/2015] [Indexed: 01/25/2023]
Abstract
Human interleukin 15 (IL-15) circulates in blood as a stable molecular complex with the soluble IL-15 receptor alpha (sIL-15Rα). This heterodimeric IL-15:sIL-15Rα complex (hetIL-15) shows therapeutic potential by promoting the growth, mobilization and activation of lymphocytes and is currently evaluated in clinical trials. Favorable pharmacokinetic properties are associated with the heterodimeric formation and the glycosylation of hetIL-15, which, however, remains largely uncharacterized. We report the site-specific N- and O-glycosylation of two clinically relevant large-scale preparations of HEK293-derived recombinant human hetIL-15. Intact IL-15 and sIL-15Rα and derived glycans and glycopeptides were separately profiled using multiple LC-MS/MS strategies. IL-15 Asn79 and sIL-15Rα Asn107 carried the same repertoire of biosynthetically-related N-glycans covering mostly α1-6-core-fucosylated and β-GlcNAc-terminating complex-type structures. The two potential IL-15 N-glycosylation sites (Asn71 and Asn112) located at the IL-2 receptor interface were unoccupied. Mass analysis of intact IL-15 confirmed its N-glycosylation and suggested that Asn79-glycosylation partially prevents Asn77-deamidation. IL-15 contained no O-glycans, whereas sIL-15Rα was heavily O-glycosylated with partially sialylated core 1 and 2-type mono- to hexasaccharides on Thr2, Thr81, Thr86, Thr156, Ser158, and Ser160. The sialoglycans displayed α2-3- and α2-6-NeuAc-type sialylation. Non-human, potentially immunogenic glycoepitopes (e.g. N-glycolylneuraminic acid and α-galactosylation) were not displayed by hetIL-15. Highly reproducible glycosylation of IL-15 and sIL-15Rα of two batches of hetIL-15 demonstrated consistent manufacturing and purification. In conclusion, we document the heterogeneous and reproducible N- and O-glycosylation of large-scale preparations of the therapeutic candidate hetIL-15. Site-specific mapping of these molecular features is important to evaluate the consistent large-scale production and clinical efficacy of hetIL-15.
Collapse
Affiliation(s)
- M Thaysen-Andersen
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia.
| | - E Chertova
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, MD, 21702, USA
| | - C Bergamaschi
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| | - E S X Moh
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - O Chertov
- Cancer Research Technology Program, Leidos Biomedical, Inc., Frederick National Laboratory, Frederick, MD, 21702, USA
| | - J Roser
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, MD, 21702, USA
| | - R Sowder
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, MD, 21702, USA
| | - J Bear
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| | - J Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, MD, 21702, USA
| | - N H Packer
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - B K Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| | - G N Pavlakis
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| |
Collapse
|
7
|
Allam H, Aoki K, Benigno BB, McDonald JF, Mackintosh SG, Tiemeyer M, Abbott KL. Glycomic analysis of membrane glycoproteins with bisecting glycosylation from ovarian cancer tissues reveals novel structures and functions. J Proteome Res 2014; 14:434-46. [PMID: 25437919 PMCID: PMC4286206 DOI: 10.1021/pr501174p] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
Biomarkers capable of detecting and
targeting epithelial ovarian
cancer cells for diagnostics and therapeutics would be extremely valuable.
Ovarian cancer is the deadliest reproductive malignancy among women
in the U.S., killing over 14 000 women each year. Both the
lack of presenting symptoms and high mortality rates illustrate the
need for earlier diagnosis and improved treatment of this disease.
The glycosyltransferase enzyme GnT-III encoded by the Mgat3 gene is responsible for the addition of GlcNAc (N-acetylglucosamine) to form bisecting N-linked glycan structures.
GnT-III mRNA expression is amplified in ovarian cancer tissues compared
with normal ovarian tissue. We use a lectin capture strategy coupled
to nano-ESI–RPLC–MS/MS to isolate and identify the membrane
glycoproteins and unique glycan structures associated with GnT-III
amplification in human ovarian cancer tissues. Our data illustrate
that the majority of membrane glycoproteins with bisecting glycosylation
are common to both serous and endometrioid histological subtypes of
ovarian cancer, and several have been reported to participate in signaling
pathways such as Notch, Wnt, and TGFβ.
Collapse
Affiliation(s)
- Heba Allam
- Complex Carbohydrate Research Center and Department of Biochemistry and Molecular Biology, University of Georgia , 315 Riverbend Road, Athens, Georgia 30602, United States
| | | | | | | | | | | | | |
Collapse
|
8
|
An Y, Rininger JA, Jarvis DL, Jing X, Ye Z, Aumiller JJ, Eichelberger M, Cipollo JF. Comparative glycomics analysis of influenza Hemagglutinin (H5N1) produced in vaccine relevant cell platforms. J Proteome Res 2013; 12:3707-20. [PMID: 23848607 DOI: 10.1021/pr400329k] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hemagglutinin (HA) is the major antigen in influenza vaccines, and glycosylation is known to influence its antigenicity. Embryonated hen eggs are traditionally used for influenza vaccine production, but vaccines produced in mammalian and insect cells were recently licensed. This raises the concern that vaccines produced with different cell systems might not be equivalent due to differences in their glycosylation patterns. Thus, we developed an analytical method to monitor vaccine glycosylation through a combination of nanoLC/MS(E) and quantitative MALDI-TOF MS permethylation profiling. We then used this method to examine glycosylation of HAs from two different influenza H5N1 strains produced in five different platforms, including hen eggs, three different insect cell lines (High Five, expresSF+ and glycoengineered expresSF+), and a human cell line (HEK293). Our results demonstrated that (1) sequon utilization is not necessarily equivalent in different cell types, (2) there are quantitative and qualitative differences in the overall N-glycosylation patterns and structures produced by different cell types, (3) ∼20% of the N-glycans on the HAs produced by High Five cells are core α1,3-fucosylated structures, which may be allergenic in humans, and (4) our method can be used to monitor differences in glycosylation during the cellular glycoengineering stages of vaccine development.
Collapse
Affiliation(s)
- Yanming An
- Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|