1
|
Kayrouz CM, Ireland KA, Ying VY, Davis KM, Seyedsayamdost MR. Discovery of the selenium-containing antioxidant ovoselenol derived from convergent evolution. Nat Chem 2024; 16:1868-1875. [PMID: 39143299 DOI: 10.1038/s41557-024-01600-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/11/2024] [Indexed: 08/16/2024]
Abstract
Selenium is an essential micronutrient, but its presence in biology has been limited to protein and nucleic acid biopolymers. The recent identification of a biosynthetic pathway for selenium-containing small molecules suggests that there is a larger family of selenometabolites that remains to be discovered. Here we identify a recently evolved branch of abundant and uncharacterized metalloenzymes that we predict are involved in selenometabolite biosynthesis using a bioinformatic search strategy that relies on the mapping of composite active site motifs. Biochemical studies confirm this prediction and show that these enzymes form an unusual C-Se bond onto histidine, thus giving rise to a distinct selenometabolite and potent antioxidant that we have termed ovoselenol. Aside from providing insights into the evolution of this enzyme class and the structural basis of C-Se bond formation, our work offers a blueprint for charting the microbial selenometabolome in the future.
Collapse
Affiliation(s)
- Chase M Kayrouz
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | | | - Vanessa Y Ying
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | | | - Mohammad R Seyedsayamdost
- Department of Chemistry, Princeton University, Princeton, NJ, USA.
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
2
|
Kayrouz CM, Ireland KA, Ying V, Davis KM, Seyedsayamdost MR. Ovoselenol, a Selenium-containing Antioxidant Derived from Convergent Evolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.10.588772. [PMID: 38645211 PMCID: PMC11030361 DOI: 10.1101/2024.04.10.588772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Selenium is an essential micronutrient, but its presence in biology has been limited to protein and nucleic acid biopolymers. The recent identification of the first biosynthetic pathway for selenium-containing small molecules suggests that there is a larger family of selenometabolites that remains to be discovered. Using a bioinformatic search strategy that relies on mapping of composite active site motifs, we identify a recently evolved branch of abundant and uncharacterized metalloenzymes that we predict are involved in selenometabolite biosynthesis. Biochemical studies confirm this prediction and show that these enzymes form an unusual C-Se bond onto histidine, thus giving rise to a novel selenometabolite and potent antioxidant that we have termed ovoselenol. Aside from providing insights into the evolution of this enzyme class and the structural basis of C-Se bond formation, our work offers a blueprint for charting the microbial selenometabolome in the future.
Collapse
Affiliation(s)
- Chase M. Kayrouz
- Department of Chemistry, Princeton University, Princeton, NJ 08544, United States
| | - Kendra A. Ireland
- Department of Chemistry, Emory University, Atlanta, GA 30322, United States
| | - Vanessa Ying
- Department of Chemistry, Princeton University, Princeton, NJ 08544, United States
| | - Katherine M. Davis
- Department of Chemistry, Emory University, Atlanta, GA 30322, United States
| | - Mohammad R. Seyedsayamdost
- Department of Chemistry, Princeton University, Princeton, NJ 08544, United States
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, United States
| |
Collapse
|
3
|
Dibello E, Oddone N, Franco J, Illyés TZ, Medeiros A, Kiss A, Hőgye F, Kövér KE, Szilágyi L, Comini MA. Selenosugars targeting the infective stage of Trypanosoma brucei with high selectivity. Int J Parasitol Drugs Drug Resist 2024; 24:100529. [PMID: 38461700 PMCID: PMC10938134 DOI: 10.1016/j.ijpddr.2024.100529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/16/2024] [Accepted: 02/27/2024] [Indexed: 03/12/2024]
Abstract
Earlier evidences showed that diglycosyl diselenides are active against the infective stage of African trypanosomes (top hits IC50 0.5 and 1.5 μM) but poorly selective (selectivity index <10). Here we extended the study to 33 new seleno-glycoconjugates with the aim to improve potency and selectivity. Three selenoglycosides and three glycosyl selenenylsulfides displayed IC50 against bloodstream Trypanosoma brucei in the sub-μM range (IC50 0.35-0.77 μM) and four of them showed an improved selectivity (selectivity index >38-folds vs. murine and human macrohages). For the glycosyl selenylsulfides, the anti-trypanosomal activity was not significantly influenced by the nature of the moiety attached to the sulfur atom. Except for a quinoline-, and to a minor extent a nitro-derivative, the most selective hits induced a rapid (within 60 min) and marked perturbation of the LMWT-redox homeostasis. The formation of selenenylsulfide glycoconjugates with free thiols has been identified as a potential mechanism involved in this process.
Collapse
Affiliation(s)
- Estefanía Dibello
- Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Mataojo 2020, CP 11400, Montevideo, Uruguay; Organic Chemistry Department, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Natalia Oddone
- Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Mataojo 2020, CP 11400, Montevideo, Uruguay
| | - Jaime Franco
- Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Mataojo 2020, CP 11400, Montevideo, Uruguay
| | - Tünde-Zita Illyés
- Department of Organic Chemistry, Faculty of Science and Technology, University of Debrecen, Hungary
| | - Andrea Medeiros
- Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Mataojo 2020, CP 11400, Montevideo, Uruguay; Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Attila Kiss
- Department of Organic Chemistry, Faculty of Science and Technology, University of Debrecen, Hungary
| | - Fanni Hőgye
- Department of Inorganic and Analytical Chemistry, Faculty of Science and Technology, University of Debrecen, Hungary
| | - Katalin E Kövér
- Department of Inorganic and Analytical Chemistry, Faculty of Science and Technology, University of Debrecen, Hungary
| | - László Szilágyi
- Department of Organic Chemistry, Faculty of Science and Technology, University of Debrecen, Hungary.
| | - Marcelo A Comini
- Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Mataojo 2020, CP 11400, Montevideo, Uruguay.
| |
Collapse
|
4
|
Sonego JM, de Diego SI, Szajnman SH, Gallo-Rodriguez C, Rodriguez JB. Organoselenium Compounds: Chemistry and Applications in Organic Synthesis. Chemistry 2023; 29:e202300030. [PMID: 37378970 DOI: 10.1002/chem.202300030] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/18/2023] [Accepted: 06/28/2023] [Indexed: 06/29/2023]
Abstract
Selenium, originally described as a toxin, turns out to be a crucial trace element for life that appears as selenocysteine and its dimer, selenocystine. From the point of view of drug developments, selenium-containing drugs are isosteres of sulfur and oxygen with the advantage that the presence of the selenium atom confers antioxidant properties and high lipophilicity, which would increase cell membrane permeation leading to better oral bioavailability. In this article, we have focused on the relevant features of the selenium atom, above all, the corresponding synthetic approaches to access a variety of organoselenium molecules along with the proposed reaction mechanisms. The preparation and biological properties of selenosugars, including selenoglycosides, selenonucleosides, selenopeptides, and other selenium-containing compounds will be treated. We have attempted to condense the most important aspects and interesting examples of the chemistry of selenium into a single article.
Collapse
Affiliation(s)
- Juan M Sonego
- Departamento de Química Orgánica Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), C1428EHA, Buenos Aires, Argentina
| | - Sheila I de Diego
- Departamento de Química Orgánica Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), C1428EHA, Buenos Aires, Argentina
| | - Sergio H Szajnman
- Departamento de Química Orgánica Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), C1428EHA, Buenos Aires, Argentina
| | - Carola Gallo-Rodriguez
- Departamento de Química Orgánica Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), C1428EHA, Buenos Aires, Argentina
| | - Juan B Rodriguez
- Departamento de Química Orgánica Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), C1428EHA, Buenos Aires, Argentina
| |
Collapse
|
5
|
Romanò C, Bengtsson D, Infantino AS, Oscarson S. Synthesis of fluoro- and seleno-containing D-lactose and D-galactose analogues. Org Biomol Chem 2023; 21:2545-2555. [PMID: 36877217 DOI: 10.1039/d2ob02299k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Synthetic deoxy-fluoro-carbohydrate derivatives and seleno-sugars are useful tools in protein-carbohydrate interaction studies using nuclear magnetic resonance spectroscopy because of the presence of the 19F and 77Se reporter nuclei. Seven saccharides containing both these atoms have been synthesized, three monosaccharides, methyl 6-deoxy-6-fluoro-1-seleno-β-D-galactopyranoside (1) and methyl 2-deoxy-2-fluoro-1-seleno-α/β-D-galactopyranoside (2α and 2β), and four disaccharides, methyl 4-O-(β-D-galactopyranosyl)-2-deoxy-2-fluoro-1-seleno-β-D-glucopyranoside (3), methyl 4-Se-(β-D-galactopyranosyl)-2-deoxy-2-fluoro-4-seleno-β-D-glucopyranoside (4), and methyl 4-Se-(2-deoxy-2-fluoro-α/β-D-galactopyranosyl)-4-seleno-β-D-glucopyranoside (5α and 5β), the three latter compounds with an interglycosidic selenium atom. Selenoglycosides 1 and 3 were obtained from the corresponding bromo sugar by treatment with dimethyl selenide and a reducing agent, while compounds 2α/2β, 4, and 5α/5β were synthesized by the coupling of a D-galactosyl selenolate, obtained in situ from the corresponding isoselenouronium salt, with either methyl iodide or a 4-O-trifluoromethanesulfonyl D-galactosyl moiety. While benzyl ether protecting groups were found to be incompatible with the selenide linkage during deprotection, a change to acetyl esters afforded 4 in a 17% overall yield and over 9 steps from peracetylated D-galactosyl bromide. The synthesis of 5 was performed similarly, but the 2-fluoro substituent led to reduced stereoselectivity in the formation of the isoselenouronium salt (α/β ∼ 1 : 2.3). However, the β-anomer of the uronium salt could be obtained almost pure (∼98%) by precipitation from the reaction mixture. The following displacement reaction occurred without anomerisation, affording, after deacetylation, pure 5β.
Collapse
Affiliation(s)
- Cecilia Romanò
- Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Dennis Bengtsson
- Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Angela Simona Infantino
- Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Stefan Oscarson
- Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
6
|
Rana A, Manna T, Kumar Misra A. Synthesis of selenium linked disaccharides using glycosyl selenocyanates as selenium precursors. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Kayrouz CM, Huang J, Hauser N, Seyedsayamdost MR. Biosynthesis of selenium-containing small molecules in diverse microorganisms. Nature 2022; 610:199-204. [PMID: 36071162 DOI: 10.1038/s41586-022-05174-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 08/02/2022] [Indexed: 01/02/2023]
Abstract
Selenium is an essential micronutrient in diverse organisms. Two routes are known for its insertion into proteins and nucleic acids, via selenocysteine and 2-selenouridine, respectively1. However, despite its importance, pathways for specific incorporation of selenium into small molecules have remained elusive. Here we use a genome-mining strategy in various microorganisms to uncover a widespread three-gene cluster that encodes a dedicated pathway for producing selenoneine, the selenium analogue of the multifunctional molecule ergothioneine2,3. We elucidate the reactions of all three proteins and uncover two novel selenium-carbon bond-forming enzymes and the biosynthetic pathway for production of a selenosugar, which is an unexpected intermediate en route to the final product. Our findings expand the scope of biological selenium utilization, suggest that the selenometabolome is more diverse than previously thought, and set the stage for the discovery of other selenium-containing natural products.
Collapse
Affiliation(s)
- Chase M Kayrouz
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Jonathan Huang
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Nicole Hauser
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Mohammad R Seyedsayamdost
- Department of Chemistry, Princeton University, Princeton, NJ, USA. .,Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
8
|
Shit P, Sahaji S, Misra AK. Synthesis of selenoglycosides and selenium linked disaccharides using reductive cleavage of diselenides. Carbohydr Res 2022; 516:108554. [DOI: 10.1016/j.carres.2022.108554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 11/02/2022]
|
9
|
Chen P, Dai X. Site-specific synthesis of 3-Se-1,2-unsaturated glycosides with R-Se-Se-R as the nucleophile precursors promoted by InCl3/Hf(OTf)4. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Selenium-Containing Polysaccharides—Structural Diversity, Biosynthesis, Chemical Modifications and Biological Activity. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11083717] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Selenosugars are a group of sugar derivatives of great structural diversity (e.g., molar masses, selenium oxidation state, and selenium binding), obtained as a result of biosynthesis, chemical modification of natural compounds, or chemical synthesis. Seleno-monosaccharides and disaccharides are known to be non-toxic products of the natural metabolism of selenium compounds in mammals. In the case of the selenium-containing polysaccharides of natural origin, their formation is also postulated as a form of detoxification of excess selenium in microorganisms, mushroom, and plants. The valency of selenium in selenium-containing polysaccharides can be: 0 (encapsulated nano-selenium), IV (selenites of polysaccharides), or II (selenoglycosides or selenium built into the sugar ring to replace oxygen). The great interest in Se-polysaccharides results from the expected synergy between selenium and polysaccharides. Several plant- and mushroom-derived polysaccharides are potent macromolecules with antitumor, immunomodulatory, antioxidant, and other biological properties. Selenium, a trace element of fundamental importance to human health, has been shown to possess several analogous functions. The mechanism by which selenium exerts anticancer and immunomodulatory activity differs from that of polysaccharide fractions, but a similar pharmacological effect suggests a possible synergy of these two agents. Various functions of Se-polysaccharides have been explored, including antitumor, immune-enhancement, antioxidant, antidiabetic, anti-inflammatory, hepatoprotective, and neuroprotective activities. Due to being non-toxic or much less toxic than inorganic selenium compounds, Se-polysaccharides are potential dietary supplements that could be used, e.g., in chemoprevention.
Collapse
|
11
|
Manna T, Misra AK. On-water synthesis of glycosyl selenocyanate derivatives and their application in the metal free organocatalytic preparation of nonglycosidic selenium linked pseudodisaccharide derivatives. RSC Adv 2021; 11:10902-10911. [PMID: 35423588 PMCID: PMC8695869 DOI: 10.1039/d1ra00711d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/02/2021] [Indexed: 12/23/2022] Open
Abstract
Glycosyl selenocyanate derivatives were prepared in very good yield by the treatment of glycosyl halide or triflate derivatives with potassium selenocyanate in water. A variety of selenium linked pseudodisaccharide derivatives were prepared in excellent yield using glycosyl selenocyanates as stable building blocks in the presence of hydrazine hydrate under metal-free organocatalytic reaction conditions.
Collapse
Affiliation(s)
- Tapasi Manna
- Division of Molecular Medicine, Bose Institute P-1/12, C.I.T. Scheme VII M Kolkata 700054 India +91-33-2355-3886
| | - Anup Kumar Misra
- Division of Molecular Medicine, Bose Institute P-1/12, C.I.T. Scheme VII M Kolkata 700054 India +91-33-2355-3886
| |
Collapse
|
12
|
Sweet Selenium: Synthesis and Properties of Selenium-Containing Sugars and Derivatives. Pharmaceuticals (Basel) 2020; 13:ph13090211. [PMID: 32859124 PMCID: PMC7558951 DOI: 10.3390/ph13090211] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/19/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023] Open
Abstract
In the last decades, organoselenium compounds gained interest due to their important biological features. However, the lack of solubility, which characterizes most of them, makes their actual clinical exploitability a hard to reach goal. Selenosugars, with their intrinsic polarity, do not suffer from this issue and as a result, they can be conceived as a useful alternative. The aim of this review is to provide basic knowledge of the synthetic aspects of selenosugars, selenonium salts, selenoglycosides, and selenonucleotides. Their biological properties will be briefly detailed. Of course, it will not be a comprehensive dissertation but an analysis of what the authors think is the cream of the crop of this interesting research topic.
Collapse
|
13
|
Synthesis of 3-S- and 3-Se-glycals by using R-S-S-R and R-Se-Se-R as the nucleophile precursors promoted by Hf(OTf)4 and the temperature-dependent formation of the above-mentioned 3-S- and 3-Se products. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.151648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Manna T, Misra AK. Glycosyl selenoacetates: versatile building blocks for the preparation of stereoselective selenoglycosides and selenium linked disaccharides. Org Biomol Chem 2019; 17:8902-8912. [PMID: 31553009 DOI: 10.1039/c9ob01623f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Glycosyl selenoacetate derivatives were prepared by the treatment of glycosyl halide with potassium selenocyanate followed by acetylation of in situ generated glycosyl selenols in one pot. A variety of selenoglycosides and selenium linked disaccharide derivatives were prepared in very good to excellent yields using glycosyl selenoacetates as stable building blocks under mild reaction conditions.
Collapse
Affiliation(s)
- Tapasi Manna
- Bose Institute, Division of Molecular Medicine, P-1/12, C.I.T. Scheme VII M, Kolkata 700054, India.
| | | |
Collapse
|
15
|
Raics M, Timári I, Diercks T, Szilágyi L, Gabius H, Kövér KE. Selenoglycosides as Lectin Ligands: 77 Se-Edited CPMG-HSQMBC NMR Spectroscopy To Monitor Biomedically Relevant Interactions. Chembiochem 2019; 20:1688-1692. [PMID: 30828921 PMCID: PMC6618100 DOI: 10.1002/cbic.201900088] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Indexed: 12/25/2022]
Abstract
The fundamental importance of protein-glycan recognition calls for specific and sensitive high-resolution techniques for their detailed analysis. After the introduction of 19 F NMR spectroscopy to study the recognition of fluorinated glycans, a new 77 Se NMR spectroscopy method is presented for complementary studies of selenoglycans with optimised resolution and sensitivity, in which direct NMR spectroscopy detection on 77 Se is replaced by its indirect observation in a 2D 1 H,77 Se HSQMBC spectrum. In contrast to OH/F substitution, O/Se exchange allows the glycosidic bond to be targeted. As an example, selenodigalactoside recognition by three human galectins and a plant toxin is readily indicated by signal attenuation and line broadening in the 2D 1 H,77 Se HSQMBC spectrum, in which CPMG-INEPT long-range transfer ensures maximal detection sensitivity, clean signal phases, and reliable ligand ranking. By monitoring competitive displacement of a selenated spy ligand, the selective 77 Se NMR spectroscopy approach may also be used to screen non-selenated compounds. Finally, 1 H,77 Se CPMG-INEPT transfer allows further NMR sensors of molecular interaction to be combined with the specificity and resolution of 77 Se NMR spectroscopy.
Collapse
Affiliation(s)
- Mária Raics
- Department of Inorganic and Analytical ChemistryUniversity of DebrecenEgyetem tér 14032DebrecenHungary
| | - István Timári
- Department of Inorganic and Analytical ChemistryUniversity of DebrecenEgyetem tér 14032DebrecenHungary
| | - Tammo Diercks
- NMR FacilityCIC bioGUNEBizkaia Technology Park, Bld 80048170DerioSpain
| | - László Szilágyi
- Department of Organic ChemistryUniversity of DebrecenEgyetem tér 14032DebrecenHungary
| | - Hans‐Joachim Gabius
- Tierärztliche Fakultät, Institut für Physiologische ChemieLudwig-Maximilians-Universität MünchenVeterinärstrasse 1380539MunichGermany
| | - Katalin E. Kövér
- Department of Inorganic and Analytical ChemistryUniversity of DebrecenEgyetem tér 14032DebrecenHungary
| |
Collapse
|
16
|
Szabó T, Bényei A, Szilágyi L. Bivalent glycoconjugates based on 1,5-diazabicyclo[3.3.0]octa-3,6-diene-2,8-dione ("bimane") as a central scaffold. Carbohydr Res 2019; 473:88-98. [PMID: 30654289 DOI: 10.1016/j.carres.2019.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/07/2018] [Accepted: 01/05/2019] [Indexed: 11/16/2022]
Abstract
The heteroaromatic fused diazabicyclic "bimane" ring system, discovered four decades ago, is endowed with remarkable chemical and photophysical properties. No carbohydrate derivatives of bimanes have, however, been described thus far. Here we report on the syntheses of a range of bimanes decorated with various glycosyl residues. Mono- and disaccharide residues were attached to syn- or anti-bimane central cores via thio-, disulfido- or selenoglycosidic linkages to obtain novel fluorescent or nonfluorescent glycoconjugates. Cu(I)-catalyzed cycloaddition of glycosyl azides to a bimane diethynyl derivative furnished further bivalent glycoconjugates with sugar residues linked to the central bimane core via 1,2,3-triazole rings. We have determined the crystal and molecular structures of several glycosylated and non-glycosylated bimanes and report fluorescence data for the new compounds.
Collapse
Affiliation(s)
- Tamás Szabó
- Gedeon Richter Plc, H-1103 Budapest, Gyömrői út 19-21, Hungary
| | - Attila Bényei
- Department of Physical Chemistry, University of Debrecen, H-4032, Debrecen, Egyetem tér 1, Hungary
| | - László Szilágyi
- Department of Organic Chemistry, University of Debrecen, H-4032, Debrecen, Egyetem tér 1, Hungary.
| |
Collapse
|
17
|
Ferrier Reaction: The first synthesis of 2,3-unsaturated seleno-glycosides by using alkyl(aryl) hydroselenides as the nucleophile and Hf(OTf)4 as the catalyst. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
18
|
Kónya Z, Bécsi B, Kiss A, Tamás I, Lontay B, Szilágyi L, Kövér KE, Erdődi F. Aralkyl selenoglycosides and related selenosugars in acetylated form activate protein phosphatase-1 and -2A. Bioorg Med Chem 2018; 26:1875-1884. [PMID: 29501414 DOI: 10.1016/j.bmc.2018.02.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/03/2018] [Accepted: 02/20/2018] [Indexed: 01/03/2023]
Abstract
Aralkyl and aryl selenoglycosides as well as glycosyl selenocarboxylate derivatives were assayed on the activity of protein phosphatase-1 (PP1) and -2A (PP2A) catalytic subunits (PP1c and PP2Ac) in search of compounds for PP1c and PP2Ac effectors. The majority of tested selenoglycosides activated both PP1c and PP2Ac by ∼2-4-fold in a phosphatase assay with phosphorylated myosin light chain substrate when the hydroxyl groups of the glycosyl moiety were acetylated, but they were without any effects in the non-acetylated forms. A peptide from the myosin phosphatase target subunit-1 (MYPT123-38) that included an RVxF PP1c-binding motif attenuated activation of PP1c by 2-Trifluoromethylbenzyl 2,3,4,6-tetra-O-acetyl-1-seleno-β-d-glucopyranoside (TFM-BASG) and 4-Bromobenzyl 2,3,4,6-tetra-O-acetyl-1-seleno-β-d-glucopyranoside (Br-BASG). MYPT123-38 stimulated PP2Ac and contributed to PP2Ac activation exerted by either Br-BASG or TFM-BASG. Br-BASG and TFM-BASG suppressed partially binding of PP1c to MYPT1 in surface plasmon resonance based binding experiments. Molecular docking predicted that the hydrophobic binding surfaces in PP1c for interaction with either the RVxF residues of PP1c-interactors or selenoglycosides are partially overlapped. Br-BASG and TFM-BASG caused a moderate increase in the phosphatase activity of HeLa cells in 1 h, and suppressed cell viability in 24 h incubations. In conclusion, our present study identified selenoglycosides as novel activators of PP1 and PP2A as well as provided insights into the structural background of their interactions establishing a molecular model for future design of more efficient phosphatase activator molecules.
Collapse
Affiliation(s)
- Zoltán Kónya
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; MTA-DE Cell Biology and Signaling Research Group, H-4032 Debrecen, Hungary.
| | - Bálint Bécsi
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary.
| | - Andrea Kiss
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary.
| | - István Tamás
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary.
| | - Beáta Lontay
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary.
| | - László Szilágyi
- Institute of Chemistry, University of Debrecen, H-4032 Debrecen, Hungary.
| | - Katalin E Kövér
- Institute of Chemistry, University of Debrecen, H-4032 Debrecen, Hungary.
| | - Ferenc Erdődi
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; MTA-DE Cell Biology and Signaling Research Group, H-4032 Debrecen, Hungary.
| |
Collapse
|
19
|
Atom Efficient Preparation of Zinc Selenates for the Synthesis of Selenol Esters under "On Water" Conditions. Molecules 2017; 22:molecules22060953. [PMID: 28594361 PMCID: PMC6152685 DOI: 10.3390/molecules22060953] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 06/01/2017] [Accepted: 06/03/2017] [Indexed: 11/17/2022] Open
Abstract
We describe here an atom efficient procedure to prepare selenol esters in good to excellent yields by reacting [(PhSe)₂Zn] or [(PhSe)₂Zn]TMEDA with acyl chlorides under "on water" conditions. The method is applicable to a series of aromatic and aliphatic acyl chlorides and tolerates the presence of other functionalities in the starting material.
Collapse
|
20
|
Bivalent O -glycoside mimetics with S /disulfide/ Se substitutions and aromatic core: Synthesis, molecular modeling and inhibitory activity on biomedically relevant lectins in assays of increasing physiological relevance. Bioorg Med Chem 2017; 25:3158-3170. [DOI: 10.1016/j.bmc.2017.04.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 03/30/2017] [Accepted: 04/03/2017] [Indexed: 12/13/2022]
|
21
|
Lu W, An X, Gao F, Zhu J, Zhou N, Zhang Z, Pan X, Zhu X. Highly Efficient Chain End Derivatization of Selenol-Ended Polystyrenes by Nucleophilic Substitution Reactions. MACROMOL CHEM PHYS 2016. [DOI: 10.1002/macp.201600485] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Weihong Lu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Department of Polymer Science and Engineering; Soochow University; Suzhou 215123 China
| | - Xiaowei An
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Department of Polymer Science and Engineering; Soochow University; Suzhou 215123 China
| | - Feng Gao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Department of Polymer Science and Engineering; Soochow University; Suzhou 215123 China
| | - Jian Zhu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Department of Polymer Science and Engineering; Soochow University; Suzhou 215123 China
| | - Nianchen Zhou
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Department of Polymer Science and Engineering; Soochow University; Suzhou 215123 China
| | - Zhengbiao Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Department of Polymer Science and Engineering; Soochow University; Suzhou 215123 China
| | - Xiangqiang Pan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Department of Polymer Science and Engineering; Soochow University; Suzhou 215123 China
| | - Xiulin Zhu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Department of Polymer Science and Engineering; Soochow University; Suzhou 215123 China
| |
Collapse
|
22
|
Illyés TZ, Balla S, Bényei A, Kumar AA, Timári I, Kövér KE, Szilágyi L. Exploring the Syntheses of Novel Glycomimetics. Carbohydrate Derivatives with Se-S
- or Se-Se
- Glycosidic Linkages. ChemistrySelect 2016. [DOI: 10.1002/slct.201600628] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Tünde-Zita Illyés
- Department of Organic Chemistry; University of Debrecen; H-4002 Debrecen Pf.400. Hungary
| | - Sára Balla
- Department of Organic Chemistry; University of Debrecen; H-4002 Debrecen Pf.400. Hungary
| | - Attila Bényei
- Department of Pharmaceutical Chemistry; University of Debrecen; H-4002 Debrecen Pf.400 Hungary
| | - Ambati Ashok Kumar
- Department of Organic Chemistry; University of Debrecen; H-4002 Debrecen Pf.400. Hungary
- Department of Inorganic and Analytical Chemistry; University of Debrecen; H-4002 Debrecen Pf.400 Hungary
| | - István Timári
- Department of Inorganic and Analytical Chemistry; University of Debrecen; H-4002 Debrecen Pf.400 Hungary
| | - Katalin E. Kövér
- Department of Inorganic and Analytical Chemistry; University of Debrecen; H-4002 Debrecen Pf.400 Hungary
| | - László Szilágyi
- Department of Organic Chemistry; University of Debrecen; H-4002 Debrecen Pf.400. Hungary
| |
Collapse
|
23
|
McDonagh AW, Mahon MF, Murphy PV. Lewis Acid Induced Anomerization of Se-Glycosides. Application to Synthesis of α-Se-GalCer. Org Lett 2016; 18:552-5. [DOI: 10.1021/acs.orglett.5b03591] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Anthony W. McDonagh
- School
of Chemistry, National University of Ireland Galway, University Road, Galway, Ireland
| | - Mary F. Mahon
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2
7AY, United Kingdom
| | - Paul V. Murphy
- School
of Chemistry, National University of Ireland Galway, University Road, Galway, Ireland
| |
Collapse
|
24
|
Suzuki T, Makyio H, Ando H, Komura N, Menjo M, Yamada Y, Imamura A, Ishida H, Wakatsuki S, Kato R, Kiso M. Expanded potential of seleno-carbohydrates as a molecular tool for X-ray structural determination of a carbohydrate-protein complex with single/multi-wavelength anomalous dispersion phasing. Bioorg Med Chem 2014; 22:2090-101. [PMID: 24631362 DOI: 10.1016/j.bmc.2014.02.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 02/18/2014] [Indexed: 01/10/2023]
Abstract
Seleno-lactoses have been successfully synthesized as candidates for mimicking carbohydrate ligands for human galectin-9 N-terminal carbohydrate recognition domain (NCRD). Selenium was introduced into the mono- or di-saccharides using p-methylselenobenzoic anhydride (Tol2Se) as a novel selenating reagent. The TolSe-substituted monosaccharides were converted into selenoglycosyl donors or acceptors, which were reacted with coupling partners to afford seleno-lactoses. The seleno-lactoses were converted to the target compounds. The structure of human galectin-9 NCRD co-crystallized with 6-MeSe-lactose was determined with single/multi-wavelength anomalous dispersion (SAD/MAD) phasing and was similar to that of the co-crystal with natural lactose.
Collapse
Affiliation(s)
- Tatsuya Suzuki
- Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan; Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hisayoshi Makyio
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Hiromune Ando
- Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan; Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Naoko Komura
- Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan; Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masanori Menjo
- Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan
| | - Yusuke Yamada
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Akihiro Imamura
- Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan
| | - Hideharu Ishida
- Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan
| | - Soichi Wakatsuki
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan; Photon Science, SLAC Natl. Accelerator Laboratory Structure Science, 2575 Sand Hill Road, MS 69, Menlo Park, CA 94025-7015, USA; Department of Structural Biology, Stanford University, Beckman Center B105, 279 Campus Drive, Stanford, CA 94305-5126, USA
| | - Ryuichi Kato
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Makoto Kiso
- Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan; Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|