1
|
Xu Y, Rashwan AK, Osman AI, Abd El-Monaem EM, Elgarahy AM, Eltaweil AS, Omar M, Li Y, Mehanni AHE, Chen W, Rooney DW. Synthesis and potential applications of cyclodextrin-based metal-organic frameworks: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2022; 21:447-477. [PMID: 36161092 PMCID: PMC9484721 DOI: 10.1007/s10311-022-01509-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 08/24/2022] [Indexed: 05/05/2023]
Abstract
Metal-organic frameworks are porous polymeric materials formed by linking metal ions with organic bridging ligands. Metal-organic frameworks are used as sensors, catalysts for organic transformations, biomass conversion, photovoltaics, electrochemical applications, gas storage and separation, and photocatalysis. Nonetheless, many actual metal-organic frameworks present limitations such as toxicity of preparation reagents and components, which make frameworks unusable for food and pharmaceutical applications. Here, we review the structure, synthesis and properties of cyclodextrin-based metal-organic frameworks that could be used in bioapplications. Synthetic methods include vapor diffusion, microwave-assisted, hydro/solvothermal, and ultrasound techniques. The vapor diffusion method can produce cyclodextrin-based metal-organic framework crystals with particle sizes ranging from 200 nm to 400 μm. Applications comprise food packaging, drug delivery, sensors, adsorbents, gas separation, and membranes. Cyclodextrin-based metal-organic frameworks showed loading efficacy of the bioactive compounds ranging from 3.29 to 97.80%.
Collapse
Affiliation(s)
- Yang Xu
- Department of Food Science and Nutrition, Zhejiang-Egypt Joint Laboratory for Comprehensive Utilization of Agricultural Biological Resources and Development of Functional Foods, Zhejiang University, Hangzhou, 310058 China
- Ningbo Research Institute, Zhejiang University, Ningbo, 315100 China
| | - Ahmed K. Rashwan
- Department of Food Science and Nutrition, Zhejiang-Egypt Joint Laboratory for Comprehensive Utilization of Agricultural Biological Resources and Development of Functional Foods, Zhejiang University, Hangzhou, 310058 China
- Department of Food and Dairy Sciences, Faculty of Agriculture, South Valley University, Qena, 83523 Egypt
| | - Ahmed I. Osman
- School of Chemistry and Chemical Engineering, Queen’s University Belfast, Belfast, BT9 5AG Northern Ireland UK
| | | | - Ahmed M. Elgarahy
- Environmental Chemistry Division, Environmental Science Department, Faculty of Science, Port Said University, Port Said, Egypt
| | | | - Mirna Omar
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Yuting Li
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang China
| | - Abul-Hamd E. Mehanni
- Department of Food Science and Nutrition, Faculty of Agriculture, Sohag University, Sohag, 82524 Egypt
| | - Wei Chen
- Department of Food Science and Nutrition, Zhejiang-Egypt Joint Laboratory for Comprehensive Utilization of Agricultural Biological Resources and Development of Functional Foods, Zhejiang University, Hangzhou, 310058 China
- Ningbo Research Institute, Zhejiang University, Ningbo, 315100 China
| | - David W. Rooney
- School of Chemistry and Chemical Engineering, Queen’s University Belfast, Belfast, BT9 5AG Northern Ireland UK
| |
Collapse
|
2
|
Prodea A, Mioc A, Banciu C, Trandafirescu C, Milan A, Racoviceanu R, Ghiulai R, Mioc M, Soica C. The Role of Cyclodextrins in the Design and Development of Triterpene-Based Therapeutic Agents. Int J Mol Sci 2022; 23:ijms23020736. [PMID: 35054925 PMCID: PMC8775686 DOI: 10.3390/ijms23020736] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/07/2022] [Accepted: 01/09/2022] [Indexed: 12/25/2022] Open
Abstract
Triterpenic compounds stand as a widely investigated class of natural compounds due to their remarkable therapeutic potential. However, their use is currently being hampered by their low solubility and, subsequently, bioavailability. In order to overcome this drawback and increase the therapeutic use of triterpenes, cyclodextrins have been introduced as water solubility enhancers; cyclodextrins are starch derivatives that possess hydrophobic internal cavities that can incorporate lipophilic molecules and exterior surfaces that can be subjected to various derivatizations in order to improve their biological behavior. This review aims to summarize the most recent achievements in terms of triterpene:cyclodextrin inclusion complexes and bioconjugates, emphasizing their practical applications including the development of new isolation and bioproduction protocols, the elucidation of their underlying mechanism of action, the optimization of triterpenes’ therapeutic effects and the development of new topical formulations.
Collapse
Affiliation(s)
- Alexandra Prodea
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania; (A.P.); (A.M.); (R.R.); (R.G.); (M.M.); (C.S.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania;
| | - Alexandra Mioc
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania;
- Department of Anatomy, Physiology, Pathophysiology, Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Christian Banciu
- Department of Internal Medicine IV, Faculty of Medicine, Victor Babes University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania
- Correspondence: (C.B.); (C.T.); Tel.: +40-256-494-604 (C.B. & C.T.)
| | - Cristina Trandafirescu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania; (A.P.); (A.M.); (R.R.); (R.G.); (M.M.); (C.S.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania;
- Correspondence: (C.B.); (C.T.); Tel.: +40-256-494-604 (C.B. & C.T.)
| | - Andreea Milan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania; (A.P.); (A.M.); (R.R.); (R.G.); (M.M.); (C.S.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania;
| | - Roxana Racoviceanu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania; (A.P.); (A.M.); (R.R.); (R.G.); (M.M.); (C.S.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania;
| | - Roxana Ghiulai
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania; (A.P.); (A.M.); (R.R.); (R.G.); (M.M.); (C.S.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania;
| | - Marius Mioc
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania; (A.P.); (A.M.); (R.R.); (R.G.); (M.M.); (C.S.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania;
| | - Codruta Soica
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania; (A.P.); (A.M.); (R.R.); (R.G.); (M.M.); (C.S.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania;
| |
Collapse
|
3
|
Zhao X, Zhang H, Gao Y, Lin Y, Hu J. A Simple Injectable Moldable Hydrogel Assembled from Natural Glycyrrhizic Acid with Inherent Antibacterial Activity. ACS APPLIED BIO MATERIALS 2020; 3:648-653. [PMID: 35019409 DOI: 10.1021/acsabm.9b01007] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Injectable low-molecular-weight hydrogels (LMWHs) from biocompatible materials have attracted much attention in biomedical applications because they can adapt any desired sizes and cavity shapes. Searching for simple, biocompatible injectable LMWHs owning inherent antibacterial activity without complicated chemical modification remains an open question to avoid the tedious synthesis/purification process and the easy bacterial infection of hydrogels in a moist environment. In this work, glycyrrhizic acid (GL), a naturally occurring compound, was found to form a stable transparent LMWH at 37 °C in physiological phosphate buffered saline (PBS) with nanoclusters as the microstructures. Moreover, this hydrogel exhibited great injectable and moldable properties. The antibacterial study showed that the growth of Gram-positive Staphylococcus aureus (S. aureus) could be completely inhibited by GL, whereas noneffect on Gram-negative Escherichia coli (E. coli) was observed. In addition, cell viability and hemolysis assay revealed that GL had good biocompatibility and hemocompatibility to mammalian cells because of its natural origin. Our simple biocompatible injectable moldable LMWH with inherent antibacterial ability has potential in the area of biomaterials and 3D bioprinting.
Collapse
Affiliation(s)
- Xia Zhao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Hao Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuxia Gao
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Yuan Lin
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jun Hu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
4
|
Qiu C, McClements DJ, Jin Z, Wang C, Qin Y, Xu X, Wang J. Development of nanoscale bioactive delivery systems using sonication: Glycyrrhizic acid-loaded cyclodextrin metal-organic frameworks. J Colloid Interface Sci 2019; 553:549-556. [DOI: 10.1016/j.jcis.2019.06.064] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/16/2019] [Accepted: 06/18/2019] [Indexed: 11/30/2022]
|
5
|
Jardon S, García CG, Quintanar D, Nieto JL, Juárez MDL, Mendoza SE. Effect of two glycyrrhizinic acid nanoparticle carriers on MARC-145 cells actin filaments. APPLIED NANOSCIENCE 2018; 8:1111-1121. [PMID: 32226703 PMCID: PMC7096899 DOI: 10.1007/s13204-018-0758-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 03/29/2018] [Indexed: 11/30/2022]
Abstract
The development of technologies that combine the advantages of nanomedicine with natural medicine represents a versatile approach to improve the safety and efficacy of drugs. Glycyrrhizinic acid (GA) is a natural compound that has a wide range of biological activities for the treatment of diseases. To establish a safe nanotransport system for this drug, two different nanoparticles with glycyrrhizinic acid, solid lipid nanoparticles (SLN-GA) and polymeric nanoparticles (PNPS-GA) were elaborated to obtain nanostructure sizes between 200 and 300 nm. The nanoparticles were evaluated at concentrations of 1.25-100 μl/ml using the MARC-145 cell line to determine the effects on cell morphology, cellular structure (actin filaments) and cell viability (mitochondrial and lysosomal) at 24 and 72 h post-exposure. The safety range of the nanoparticles was 50 µl/ml, to determine that PNPs-GA had an optimal safety profile and no cytotoxic effects, as there was no evidence of changes in morphology, internal cellular structures (stress fibers and the cell cortex formed by actin filaments) or viability under the experimental concentrations and conditions employed.
Collapse
Affiliation(s)
- Samantha Jardon
- Unidad de Investigación Multidisciplinaria L4 (Morfología Veterinaria y Biología Celular), UNAM-FESC, Campus 4, 54714 Cuautitlán Izcalli, Mexico
| | - Carlos G García
- Unidad de Investigación Multidisciplinaria L4 (Morfología Veterinaria y Biología Celular), UNAM-FESC, Campus 4, 54714 Cuautitlán Izcalli, Mexico
| | - David Quintanar
- Laboratorio de Investigación y Posgrado en Tecnología Farmacéutica, UNAM-FESC, Campus 1, 54714 Cuautitlán Izcalli, Mexico
| | - José L Nieto
- Unidad de Investigación Multidisciplinaria L4 (Morfología Veterinaria y Biología Celular), UNAM-FESC, Campus 4, 54714 Cuautitlán Izcalli, Mexico
| | - María de Lourdes Juárez
- 3Departamento de Morfología de la Facultad de Medicina Veterinaria y Zootecnia, UNAM-FMVZ, Mexico City, Mexico
| | - Susana E Mendoza
- Laboratorio de Virología y Microbiología de las Enfermedades Respiratorias del Cerdo, UNAM-FESC, Campus 1, 54714 Cuautitlán Izcalli, Mexico
| |
Collapse
|
6
|
Storage quality and microbiological safety of high pressure pasteurized liquorice root sherbet. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.01.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Dudzik K, Wojcik J, Ejchart A, Nowakowski M. Size makes a difference: Chiral recognition in complexes of fenchone with cyclodextrins studied by means of NMR titration. Chirality 2017; 29:747-758. [DOI: 10.1002/chir.22747] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 07/19/2017] [Accepted: 07/21/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Karolina Dudzik
- Faculty of Pharmacy with the Laboratory Medicine Division; Medical University of Warsaw; Warsaw Poland
| | - Jacek Wojcik
- Institute of Biochemistry and Biophysics; Laboratory of Biological NMR; Warsaw Poland
| | - Andrzej Ejchart
- Institute of Biochemistry and Biophysics; Laboratory of Biological NMR; Warsaw Poland
| | - Michał Nowakowski
- Faculty of Chemistry, Biological and Chemical Research Centre; University of Warsaw; Warsaw Poland
| |
Collapse
|
8
|
Lima PSS, Lucchese AM, Araújo-Filho HG, Menezes PP, Araújo AAS, Quintans-Júnior LJ, Quintans JSS. Inclusion of terpenes in cyclodextrins: Preparation, characterization and pharmacological approaches. Carbohydr Polym 2016; 151:965-987. [PMID: 27474645 DOI: 10.1016/j.carbpol.2016.06.040] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 06/08/2016] [Accepted: 06/09/2016] [Indexed: 12/31/2022]
Abstract
Terpenes constitute the largest class of natural products and are important resources for the pharmaceutical, food and cosmetics industries. However, due to their low water solubility and poor bioavailability there has been a search for compounds that could improve their physicochemical properties. Cyclodextrins (natural and derived) have been proposed for this role and have been complexed with different types of terpenes. This complexation has been demonstrated by using analytical techniques for characterizing complexes such as DSC, NMR, XRD, FTIR, and TGA. The formation of inclusion complexes has been able to improve drug characteristics such as bioavailability, solubility and stability; and to enhance biological activity and efficacy. This review shows strong experimental evidence that cyclodextrins improve the pharmacological properties of terpenes, and therefore need to be recognized as being possible targets for clinical use.
Collapse
Affiliation(s)
- Pollyana S S Lima
- Post-Graduate Program in Biotechnology, State University of Feira de Santana, Feira de Santana, BA, Brazil
| | - Angélica M Lucchese
- Post-Graduate Program in Biotechnology, State University of Feira de Santana, Feira de Santana, BA, Brazil
| | - Heitor G Araújo-Filho
- Post-Graduate Program in Health Sciences, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Paula P Menezes
- Post-Graduate Program in Health Sciences, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Adriano A S Araújo
- Post-Graduate Program in Health Sciences, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | | | - Jullyana S S Quintans
- Post-Graduate Program in Health Sciences, Federal University of Sergipe, São Cristóvão, SE, Brazil.
| |
Collapse
|
9
|
Oda M, Kuroda M. Molecular dynamics simulations of inclusion complexation of glycyrrhizic acid and cyclodextrins (1:1) in water. J INCL PHENOM MACRO 2016. [DOI: 10.1007/s10847-016-0626-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|