1
|
Yan XH, Liu XQ, Liang J, Kuang HX, Xia YG. Complete composition analysis of polysaccharides based on HPAEC-PAD coupled with quantitative analysis of multi-components by single marker. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:380-390. [PMID: 37886810 DOI: 10.1002/pca.3296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/16/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023]
Abstract
INTRODUCTION Monosaccharide compositions analysis (MCA) is indispensable for structural characterisations and structure-activity relationships of plant polysaccharides. OBJECTIVES To develop a concise and direct MCA method, we established a quantitative analysis of the multi-monosaccharaides by single marker (QAMS) by high-performance anion-exchange chromatography with pulsed-amperometric detection (HPAEC-PAD) method. METHODOLOGY A stable and reproducible HPAEC-PAD method for simultaneous determination of aldoses, ketoses and uronic acids (i.e., l-arabinose, d-xylose, d-ribose, l-rhamnose, d-fucose, d-mannose, d-glucose, d-galactose, d-fructose, d-glucuronic acid and d-galacturonic acid) was established by systematic optimisation of stationary phases, column temperatures and elution programmes. On this basis, the QAMS method was proposed through comprehensive investigations of relative correction factor (RCF) variations under different influencing factors, for example, sample concentrations, flow rates, and column temperatures. RESULTS Using rhamnose as an internal reference standard, the contents of the other monosaccharide components in polysaccharides from Panax quinquefolium L. and Achyranthes bidentata Bl. samples were simultaneously determined by QAMS, and there was no significant difference between the results from the QAMS and external standard method (t test, P > 0.520). In addition, a MCA fingerprinting of 30 batches of P. quinquefolium polysaccharide was established by HPAEC-PAD, and six common peaks were assigned and determined. CONCLUSIONS The established HPAEC-PAD-QAMS method was successfully applied to the MCA of polysaccharides from P. quinquefolium and A. bidentata after optimisation of hydrolysis conditions. HPAEC-PAD-QAMS was proposed and established for MCA of plant polysaccharides for the first time.
Collapse
Affiliation(s)
- Xiao-Hui Yan
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Harbin, China
- Office of Academic Affairs, Qiqihar Medical University, Qiqihar, China
| | - Xue-Qing Liu
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jun Liang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hai-Xue Kuang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yong-Gang Xia
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
2
|
Liang J, Zhao Y, Yang F, Zheng L, Ma Y, Liu Q, Cai L, Gong W, Wang B. Preparation and structure-activity relationship of highly active black garlic polysaccharides. Int J Biol Macromol 2022; 220:601-612. [PMID: 35988729 DOI: 10.1016/j.ijbiomac.2022.08.115] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 02/08/2023]
Abstract
The aim of this study was to establish a method to improve the biological activity of polysaccharides. Three acid-treated polysaccharides (BGPS-2, BGPS-3 and BGPS-4) were obtained by treating black garlic polysaccharides (BGPS-1) with sulfuric acid at different intensities. The structure was characterized using the sulfuric acid-carbazole assay, IC, HPSEC-MALLS and FT-IR. The biological functions were evaluated using antioxidant and melanin biosynthesis inhibition assays. Compared with BGPS-1, the molecular weight of acid-treated polysaccharides significantly decreased, and the uronic acid content significantly increased. Antioxidant capacity negatively correlated with molecular weight, whereas melanin inhibition activity positively correlated with uronic acid content. BGPS-4 had the highest antioxidant capacity and the lowest molecular weight (1.25 × 103 Da), 79.41 % lower than that of BGPS-1. BGPS-3 was the strongest inhibitor of melanin formation and had the highest uronic acid content (50.73 %), 238.2 % higher than that of BGPS-1. Molecular weight and uronic acid content were the main structural characteristics that affected the antioxidant and melanin biosynthesis inhibition activities, respectively. BGPS-1, BGPS-2, BGPS-3, and BGPS-4 all had β-linked pyranose, multi-branched, and non-triple helical spiral structures. Therefore, the acid hydrolysis method markedly modified the structural characteristics of black garlic polysaccharides, and increased their antioxidant capacity and melanin biosynthesis inhibition activity.
Collapse
Affiliation(s)
- Jie Liang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Yonglei Zhao
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Furui Yang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Lan Zheng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China.
| | - Yaohong Ma
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Qingai Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Lei Cai
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Weili Gong
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Binglian Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| |
Collapse
|
3
|
Li Y, Liang J, Gao JN, Shen Y, Kuang HX, Xia YG. A novel LC-MS/MS method for complete composition analysis of polysaccharides by aldononitrile acetate and multiple reaction monitoring. Carbohydr Polym 2021; 272:118478. [PMID: 34420737 DOI: 10.1016/j.carbpol.2021.118478] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/18/2021] [Accepted: 07/20/2021] [Indexed: 12/11/2022]
Abstract
Carbohydrate analysis has always been a challenging task due to the occurrence of high polarity and multiple isomers. Aldoses are commonly analyzed by gas liquid chromatography (GLC) following aldononitrile acetate derivatization (AND). However, the GLC technique cannot be applied for the simultaneous determination of aldoses, ketoses, and uronic acids. In this study, a new method based on the combination of liquid chromatography-tandem mass spectrometry (LC-MS/MS) and AND is developed for the complete characterization of monosaccharide composition (i.e., aldoses, ketoses, alditols, amino sugars, and uronic acids) in plant-derived polysaccharides. In addition to discussing the possible byproducts, the study optimizes the multiple reaction monitoring (MRM) parameters and LC conditions. The final separation of 17 carbohydrates is performed on a BEH Shield RP18 column (150 mm × 2.1 mm, 1.7 μm) within 25 min, without using any buffer salt. Notably, the complex polysaccharides extracted from Ligusticum chuanxiong, Platycodon grandiflorum, Cyathula officinalis Kuan, Juglans mandshurica Maxim, and Aralia elata (Miq.). Seem bud can be successfully characterized using the developed method. Overall, the results demonstrated that the newly established LC-MS/MS MRM method is more effective and powerful than the GLC-based methods reported previously, and it is more suitable for the analysis of highly complex natural polysaccharides, including complex pectins, fructosans, and glycoproteins.
Collapse
Affiliation(s)
- Ye Li
- Key Laboratory of Chinese Materia Medica (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China
| | - Jun Liang
- Key Laboratory of Chinese Materia Medica (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China
| | - Jia-Ning Gao
- Key Laboratory of Chinese Materia Medica (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China
| | - Yu Shen
- Key Laboratory of Chinese Materia Medica (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China
| | - Hai-Xue Kuang
- Key Laboratory of Chinese Materia Medica (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China
| | - Yong-Gang Xia
- Key Laboratory of Chinese Materia Medica (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, PR China.
| |
Collapse
|
4
|
Analysis of hyaluronan and its derivatives using chromatographic and mass spectrometric techniques. Carbohydr Polym 2020; 250:117014. [DOI: 10.1016/j.carbpol.2020.117014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/10/2020] [Accepted: 08/26/2020] [Indexed: 01/15/2023]
|
5
|
Bailly C, Hecquet PE, Kouach M, Thuru X, Goossens JF. Chemical reactivity and uses of 1-phenyl-3-methyl-5-pyrazolone (PMP), also known as edaravone. Bioorg Med Chem 2020; 28:115463. [DOI: 10.1016/j.bmc.2020.115463] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/19/2020] [Accepted: 03/21/2020] [Indexed: 12/16/2022]
|
6
|
Distribution analysis of polysaccharides comprised of uronic acid-hexose/hexosamine repeating units in various shellfish species. Glycoconj J 2018; 35:537-545. [DOI: 10.1007/s10719-018-9846-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/15/2018] [Accepted: 10/08/2018] [Indexed: 12/22/2022]
|
7
|
Peng T, Wooke Z, Pohl NLB. Scope and limitations of carbohydrate hydrolysis for de novo glycan sequencing using a hydrogen peroxide/metallopeptide-based glycosidase mimetic. Carbohydr Res 2018; 458-459:85-88. [PMID: 29475194 DOI: 10.1016/j.carres.2018.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 01/10/2018] [Accepted: 01/29/2018] [Indexed: 12/13/2022]
Abstract
Acidic hydrolysis is commonly used as a first step to break down oligo- and polysaccharides into monosaccharide units for structural analysis. While easy to set up and amenable to mass spectrometry detection, acid hydrolysis is not without its drawbacks. For example, ring-destruction side reactions and degradation products, along with difficulties in optimizing conditions from analyte to analyte, greatly limits its broad utility. Herein we report studies on a hydrogen peroxide/CuGGH metallopeptide-based glycosidase mimetic design for a more efficient and controllable carbohydrate hydrolysis. A library of methyl glycosides consisting of ten common monosaccharide substrates, along with oligosaccharide substrates, was screened with the artificial glycosidase for hydrolytic activity in a high-throughput format with a robotic liquid handling system. The artificial glycosidase was found to be active towards most screened linkages, including alpha- and beta-anomers, thus serving as a potential alternative method for traditional acidic hydrolysis approaches of oligosaccharides.
Collapse
Affiliation(s)
- Tianyuan Peng
- Department of Chemistry, Indiana University, Bloomington, IN, USA
| | - Zachary Wooke
- Department of Chemistry, Indiana University, Bloomington, IN, USA
| | - Nicola L B Pohl
- Department of Chemistry, Indiana University, Bloomington, IN, USA; Radcliffe Institute of Advanced Study, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
8
|
Cao C, Song S, Wu S, Ai C, Liu H, Lu J, Wen C. Characterization and comparison of acidic polysaccharide populations in Atrina pectinata individuals. J Carbohydr Chem 2018. [DOI: 10.1080/07328303.2018.1438454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Chunyang Cao
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
- National Engineering Research Center of Seafood, Dalian, P. R. China
| | - Shuang Song
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
- National Engineering Research Center of Seafood, Dalian, P. R. China
- National and Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian, P. R. China
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA, U.S.A
| | - Sufeng Wu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| | - Chunqing Ai
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
- National Engineering Research Center of Seafood, Dalian, P. R. China
- National and Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian, P. R. China
| | - Haiman Liu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
- National Engineering Research Center of Seafood, Dalian, P. R. China
| | - Jiaojiao Lu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
- National Engineering Research Center of Seafood, Dalian, P. R. China
| | - Chengrong Wen
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
- National Engineering Research Center of Seafood, Dalian, P. R. China
- National and Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian, P. R. China
| |
Collapse
|