1
|
Abronina PI, Novikov DS, Malysheva NN, Zinin AI, Chizhov AO, Kononov LO. Stereocontrolled 1,2-trans-arabinofuranosylation in the absence of 2-O-acyl group in glycosyl donor. Carbohydr Res 2024; 544:109252. [PMID: 39217847 DOI: 10.1016/j.carres.2024.109252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/09/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Stereocontrolled 1,2-trans-α-arabinofuranosylation using polysilylated mono- and disaccharide glycosyl donors was investigated. A complete α-stereoselectivity of 1,2-trans-arabinofuranosylation was found for Ara-β-(1 → 2)-Ara disaccharide glycosyl donors containing five triisopropylsilyl (TIPS) groups with arylthiol (1) (as shown in our previous publications) or N-phenyltrifluoroacetimidoyl (2) (this work) leaving groups. Conversely, in case of monosaccharide thioglycosides polysilylated with acyclic silyl groups (TIPS, TBDPS), stereoselectivity of glycosylation was lower (α:β = 7-8:1), although the desired α-isomer still dominated. Disaccharide glycosyl donor 2 was successfully used in the synthesis of linear α-(1 → 5)-, β-(1 → 2)-linked hexaarabinofuranoside useful for further preparation of conjugates thereof as antigens valuable for the diagnosis of mycobacterioses.
Collapse
Affiliation(s)
- Polina I Abronina
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky prosp. 47, 119991, Moscow, Russian Federation.
| | - Dmitry S Novikov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky prosp. 47, 119991, Moscow, Russian Federation
| | - Nelly N Malysheva
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky prosp. 47, 119991, Moscow, Russian Federation
| | - Alexander I Zinin
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky prosp. 47, 119991, Moscow, Russian Federation
| | - Alexander O Chizhov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky prosp. 47, 119991, Moscow, Russian Federation
| | - Leonid O Kononov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky prosp. 47, 119991, Moscow, Russian Federation.
| |
Collapse
|
2
|
Abronina PI, Malysheva NN, Zinin AI, Novikov DS, Panova MV, Kononov LO. Unusual triflic acid-promoted oligomerization of arabinofuranosides during glycosylation. Carbohydr Res 2024; 540:109141. [PMID: 38740000 DOI: 10.1016/j.carres.2024.109141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/27/2024] [Accepted: 05/01/2024] [Indexed: 05/16/2024]
Abstract
We discovered an unusual triflic acid-promoted oligomerization of arabinofuranosides during glycosylation of the primary hydroxy group of α-(1 → 5)-linked tetraarabinofuranoside bearing 4-(2-chloroethoxy)phenyl aglycone with α-(1 → 5), β-(1 → 2)-linked tetraarabinofuranoside containing N-phenyltrifluoroacetimidoyl leaving group, which led to octa-, dodeca- and hexadecaarabinofuranosides. The possible mechanism of triflic acid-promoted oligomerization was proposed. The choice of promoter was found to be a critical factor for the discovered oligomerization of arabinofuranosides. The obtained octa-, dodeca- and hexadecaarabinofuranosides may serve as useful blocks in the synthesis of oligosaccharide fragments of polysaccharides of Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Polina I Abronina
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp. 47, 119991 Moscow, Russian Federation.
| | - Nelly N Malysheva
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp. 47, 119991 Moscow, Russian Federation
| | - Alexander I Zinin
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp. 47, 119991 Moscow, Russian Federation
| | - Dmitry S Novikov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp. 47, 119991 Moscow, Russian Federation
| | - Maria V Panova
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp. 47, 119991 Moscow, Russian Federation
| | - Leonid O Kononov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp. 47, 119991 Moscow, Russian Federation.
| |
Collapse
|
3
|
Karpenko MY, Abronina PI, Zinin AI, Chizhov AO, Kononov LO. TIPS group-assisted isomerization of benzyl protected d-manno- and d-glucopyranose to d-fructofuranose derivatives. Carbohydr Res 2023; 534:108942. [PMID: 37769375 DOI: 10.1016/j.carres.2023.108942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/30/2023]
Abstract
Base-promoted (MeONa in MeOH or imidazole in DMF) isomerization of a series of 3,4,6-tri-O-benzyl-d-gluco- and d-mannopyranose derivatives with triisopropylsilyl (TIPS) substituents was studied. The presence of a bulky TIPS group at O-1 or O-2 was shown to be favorable for the isomerization of benzyl protected d-gluco- and d-mannopyranose derivatives to d-fructofuranose derivatives, in which the bulky silyl group occupies less sterically hindered primary position. The highest yield (33%) of the fructofuranose derivative was achieved when 3,4,6-tri-O-benzyl-2-O-triisopropylsilyl-d-mannopyranose was treated with MeONa in MeON at 50 °C.
Collapse
Affiliation(s)
- Maxim Y Karpenko
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp. 47, 119991, Moscow, Russian Federation
| | - Polina I Abronina
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp. 47, 119991, Moscow, Russian Federation.
| | - Alexander I Zinin
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp. 47, 119991, Moscow, Russian Federation
| | - Alexander O Chizhov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp. 47, 119991, Moscow, Russian Federation
| | - Leonid O Kononov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp. 47, 119991, Moscow, Russian Federation.
| |
Collapse
|
4
|
Phase-Transfer Catalyzed Microfluidic Glycosylation: A Small Change in Concentration Results in a Dramatic Increase in Stereoselectivity. Catalysts 2023. [DOI: 10.3390/catal13020313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Phase-transfer catalysis (PTC) is widely used in glycochemistry for the preparation of aryl glycosides by the glycosylation reaction. While investigating the possibility of synthesis of 4-(3-chloropropoxy)phenyl sialoside (Neu5Ac-OCPP) from N-acetylsialyl chloride with O-acetyl groups (1), we have recently discovered a strong dependence of the PTC glycosylation outcome on the mixing mode: under batch conditions, only α-anomer of Neu5Ac-OCPP was obtained, albeit in low yield (13%), while under microfluidic conditions the yield of Neu5Ac-OCPP increased to 36%, although stereoselectivity decreased (α/β ≤ 6.2). Here, we report that the outcome of this reaction, performed under microfluidic conditions using a Comet X-01 micromixer (at 2 μL/min flow rate), non-linearly depends on the concentration of N-acetylsialyl chloride 1 (5–200 mmol/L). The target Neu5Ac-OCPP was obtained in a noticeably higher yield (up to 66%) accompanied by enhanced stereoselectivity (α/β = 17:1–32:1) in the high concentration range (C > 50 mmol/L), whereas the yield (10–36%) and especially, stereoselectivity (α/β = 0.9:1–6.2:1) were lower in the low concentration range (C ≤ 50 mmol/L). This dramatic stepwise increase in stereoselectivity above critical concentration (50 mmol/L) is apparently related to the changes in the presentation of molecules on the surface of supramers of glycosyl donor, which exist in different concentration ranges.
Collapse
|
5
|
Synthesis of selectively protected α-(1→3)- and α-(1→5)-linked octasaccharide moiety bearing a Janus aglycone, related to the branching site of mycobacterial polysaccharides. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3703-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
6
|
Abronina PI, Malysheva NN, Zinin AI, Kolotyrkina NG, Kononov L. Stereocontrolling Effect of a Single Triisopropylsilyl Group in 1,2‐cis‐Glucosylation. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Polina I. Abronina
- Zelinsky Institute of Organic Chemistry RAS: Institut organiceskoj himii imeni N D Zelinskogo RAN Laboratory of Glycochemistry RUSSIAN FEDERATION
| | - Nelly N. Malysheva
- Zelinsky Institute of Organic Chemistry RAS: Institut organiceskoj himii imeni N D Zelinskogo RAN Laboratory of Glycochemistry RUSSIAN FEDERATION
| | - Alexander I. Zinin
- Zelinsky Institute of Organic Chemistry RAS: Institut organiceskoj himii imeni N D Zelinskogo RAN Laboratory of Glycochemistry RUSSIAN FEDERATION
| | - Natalya G. Kolotyrkina
- Zelinsky Institute of Organic Chemistry RAS: Institut organiceskoj himii imeni N D Zelinskogo RAN Laboratory of Glycochemistry RUSSIAN FEDERATION
| | - Leonid Kononov
- Zelinsky Institute of Organic Chemistry RAS: Institut organiceskoj himii imeni N D Zelinskogo RAN Laboratory of Glycochemistry Leninsky prosp., 47 119991 Moscow RUSSIAN FEDERATION
| |
Collapse
|
7
|
Abronina PI, Podvalnyy NM, Kononov LO. The use of silyl groups in the synthesis of arabinofuranosides. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3371-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
8
|
Myachin IV, Mamirgova ZZ, Stepanova EV, Zinin AI, Chizhov AO, Kononov L. Black swan in phase transfer catalysis: influence of mixing mode on the stereoselectivity of glycosylation. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ilya V. Myachin
- Zelinsky Institute of Organic Chemistry RAS: Institut organiceskoj himii imeni N D Zelinskogo RAN Laboratory of Glycochemistry RUSSIAN FEDERATION
| | - Zarina Z. Mamirgova
- Zelinsky Institute of Organic Chemistry RAS: Institut organiceskoj himii imeni N D Zelinskogo RAN Laboratory of Glycochemistry RUSSIAN FEDERATION
| | - Elena V. Stepanova
- Zelinsky Institute of Organic Chemistry RAS: Institut organiceskoj himii imeni N D Zelinskogo RAN Laboraory of Glycochemistry RUSSIAN FEDERATION
| | - Alexander I. Zinin
- Zelinsky Institute of Organic Chemistry RAS: Institut organiceskoj himii imeni N D Zelinskogo RAN Laboratory of Glycochemistry RUSSIAN FEDERATION
| | - Alexander O. Chizhov
- Zelinsky Institute of Organic Chemistry RAS: Institut organiceskoj himii imeni N D Zelinskogo RAN Laboratory of Glycochemistry RUSSIAN FEDERATION
| | - Leonid Kononov
- N.D. Zelinsky Institute of Organic Chemistry Laboratory of Glycochemistry Leninsky prosp., 47 119991 Moscow RUSSIAN FEDERATION
| |
Collapse
|
9
|
Abronina PI, Zinin AI, Chizhov AO, Kononov LO. Unusual Outcome of Glycosylation: Hydrogen‐Bond Mediated Control of Stereoselectivity by
N
‐Trifluoroacetyl Group? European J Org Chem 2020. [DOI: 10.1002/ejoc.202000520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Polina I. Abronina
- N.K. Kochetkov Laboratory of Carbohydrate Chemistry N.D. Zelinsky Institute of Organic Chemistry Leninsky prosp. 47 119991 Moscow Russian Federation
| | - Alexander I. Zinin
- N.K. Kochetkov Laboratory of Carbohydrate Chemistry N.D. Zelinsky Institute of Organic Chemistry Leninsky prosp. 47 119991 Moscow Russian Federation
| | - Alexander O. Chizhov
- N.K. Kochetkov Laboratory of Carbohydrate Chemistry N.D. Zelinsky Institute of Organic Chemistry Leninsky prosp. 47 119991 Moscow Russian Federation
| | - Leonid O. Kononov
- N.K. Kochetkov Laboratory of Carbohydrate Chemistry N.D. Zelinsky Institute of Organic Chemistry Leninsky prosp. 47 119991 Moscow Russian Federation
| |
Collapse
|
10
|
Burygin GL, Abronina PI, Podvalnyy NM, Staroverov SA, Kononov LO, Dykman LA. Preparation and in vivo evaluation of glyco-gold nanoparticles carrying synthetic mycobacterial hexaarabinofuranoside. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:480-493. [PMID: 32274287 PMCID: PMC7113550 DOI: 10.3762/bjnano.11.39] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/20/2020] [Indexed: 05/07/2023]
Abstract
A number of bacterial glycans are specific markers for the detection and the serological identification of microorganisms and are also widely used as antigenic components of vaccines. The use of gold nanoparticles as carriers for glyco-epitopes is becoming an important alternative to the traditional conjugation with proteins and synthetic polymers. In this study, we aimed to prepare and evaluate in vivo glyco-gold nanoparticles (glyco-GNPs) bearing the terminal-branched hexaarabinofuranoside fragment (Ara6) of arabinan domains of lipoarabinomannan and arabinogalactan, which are principal polysaccharides of the cell wall of Mycobacterium tuberculosis, the causative agent of tuberculosis. In particular, we were interested whether the antibodies generated against Ara6-GNPs would recognize the natural saccharides on the cell surface of different mycobacterial strains. Two synthetic Ara6 glycosides with amino-functionalized spacer aglycons differing in length and hydrophilicity were directly conjugated with spherical gold nanoparticles (d = 15 nm) to give two sets of glyco-GNPs, which were used for the immunization of rabbits. Dot assays revealed cross-reactions between the two obtained antisera with the hexaarabinofuranoside and the 2-aminoethyl aglycon used for the preparation of glyco-GNPs. Both antisera contained high titers of antibodies specific for Mycobacteria as shown by enzyme-linked immunosorbent assay using M. bovis and M. smegmatis cells as antigens while there was only a weak response to M. phlei cells and no interaction with E. coli cells. The results obtained suggest that glyco-GNPs are promising agents for the generation of anti-mycobacterial antibodies.
Collapse
Affiliation(s)
- Gennady L Burygin
- Laboratory of Immunochemistry, Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Prospekt Entuziastov 13, Saratov, 410049, Russia
- Department of Horticulture, Breeding, and Genetics, Vavilov Saratov State Agrarian University, Teatralnaya Ploshchad 1, Saratov, 410012, Russia
| | - Polina I Abronina
- Laboratory of Carbohydrate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospekt 47, Moscow, 119991, Russia
| | - Nikita M Podvalnyy
- Laboratory of Carbohydrate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospekt 47, Moscow, 119991, Russia
| | - Sergey A Staroverov
- Laboratory of Immunochemistry, Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Prospekt Entuziastov 13, Saratov, 410049, Russia
| | - Leonid O Kononov
- Laboratory of Carbohydrate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospekt 47, Moscow, 119991, Russia
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), Institutsky per. 9, Dolgoprudnyi, Moscow Region, 141701, Russia
| | - Lev A Dykman
- Laboratory of Immunochemistry, Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Prospekt Entuziastov 13, Saratov, 410049, Russia
| |
Collapse
|
11
|
Kondakov NN, Panova MV, Abronina PI, Zinin AI, Shpirt AM, Kononov LO. Synthesis of 4-(2-chloroethoxy)phenyl glycosides and their modification. Russ Chem Bull 2019. [DOI: 10.1007/s11172-019-2402-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Jost U, Abronina PI, Zinin AI, Michalik D, Kragl U, Kondakov NN, Chizov AO, Torgov VI, Kononov LO. New approaches to analogs of α-linked galactosylceramides based on functionalized serinol. Russ Chem Bull 2019. [DOI: 10.1007/s11172-018-2373-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Janus glycosides of next generation: Synthesis of 4-(3-chloropropoxy)phenyl and 4-(3-azidopropoxy)phenyl glycosides. Carbohydr Res 2019; 471:95-104. [DOI: 10.1016/j.carres.2018.11.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/22/2018] [Accepted: 11/22/2018] [Indexed: 11/22/2022]
|