1
|
Galli S, Troiano S, Palloshi A, Rapetto C, Pisano F, Aprigliano G, Leoncini M, Ravagnani P, Del Maestro M, Montorsi P. Comparison of acute versus stable coronary syndrome in patients treated with the Magmaris scaffold: Two-year results from the Magmaris Multicenter Italian Registry. CARDIOVASCULAR REVASCULARIZATION MEDICINE 2023; 57:53-59. [PMID: 37543502 DOI: 10.1016/j.carrev.2023.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/06/2023] [Accepted: 06/19/2023] [Indexed: 08/07/2023]
Abstract
BACKGROUND The magnesium Magmaris scaffold is the latest resorbable technology with low thrombogenicity, short scaffolding time, and almost complete resorption at 12 months (95 %). As compared with stable coronary artery disease (SCAD), acute coronary syndrome (ACS) is associated with increased risk of adverse clinical outcome after percutaneous coronary intervention. We analyzed the data of the Magmaris Multicenter Italian Registry to compare clinical outcomes in SCAD versus ACS patients. METHODS We evaluated the 24-month rates of target lesion failure (TLF) and scaffold thrombosis (ST). Device implantation procedures were performed according to the manufacturer's recommendations (proper patient/lesion selection, pre-dilatation, proper scaffold sizing, and post-dilatation). Dual antiplatelet therapy was terminated after 12 months. RESULTS Data from 207 patients (145 SCAD and 62 ACS) were collected from July 2016 to June 2018. The 2-year follow-up compliance was 92.8 % (192 patients). At 2 years, TLF rates were 7.4 % in the SCAD group and 8.8 % in the ACS group (p = 0.7); ST rates were 0 % in the SCAD group and 1.8 % in the ACS group (p = 0.1). CONCLUSION The 2-year clinical results from the Magmaris Multicenter Italian Registry are favorable in terms of TLF and ST, indicating the safety and effectiveness of the Magmaris scaffold in both SCAD and ACS patients.
Collapse
Affiliation(s)
- Stefano Galli
- Cardiologia Invasiva 2, Centro Cardiologico Fondazione Monzino, IRCCS, Università di Milano, Italy.
| | - Sarah Troiano
- Cardiologia Invasiva 2, Centro Cardiologico Fondazione Monzino, IRCCS, Università di Milano, Italy
| | - Altin Palloshi
- Laboratorio di emodinamica e interventistica cardiovascolare, Istituto Clinico Città Studi, Milano, Italy
| | - Claudio Rapetto
- S.S.D. Cardiologia Interventistica, Ospedale di Sanremo (IM), Italy
| | - Francesco Pisano
- Unità di Emodinamica e Cardiologia Interventistica, Ospedale regionale Umberto Parini, Aosta, Italy
| | - Gianfranco Aprigliano
- Laboratorio di emodinamica e interventistica cardiovascolare, Istituto Clinico Città Studi, Milano, Italy
| | - Massimo Leoncini
- S.S.D. Cardiologia Interventistica, Ospedale di Sanremo (IM), Italy
| | - Paolo Ravagnani
- Cardiologia Invasiva 2, Centro Cardiologico Fondazione Monzino, IRCCS, Università di Milano, Italy
| | | | - Piero Montorsi
- Cardiologia Invasiva 2, Centro Cardiologico Fondazione Monzino, IRCCS, Università di Milano, Italy
| |
Collapse
|
2
|
Chen X, Xia Y, Shen S, Wang C, Zan R, Yu H, Yang S, Zheng X, Yang J, Suo T, Gu Y, Zhang X. Research on the Current Application Status of Magnesium Metal Stents in Human Luminal Cavities. J Funct Biomater 2023; 14:462. [PMID: 37754876 PMCID: PMC10532415 DOI: 10.3390/jfb14090462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 09/28/2023] Open
Abstract
The human body comprises various tubular structures that have essential functions in different bodily systems. These structures are responsible for transporting food, liquids, waste, and other substances throughout the body. However, factors such as inflammation, tumors, stones, infections, or the accumulation of substances can lead to the narrowing or blockage of these tubular structures, which can impair the normal function of the corresponding organs or tissues. To address luminal obstructions, stenting is a commonly used treatment. However, to minimize complications associated with the long-term implantation of permanent stents, there is an increasing demand for biodegradable stents (BDS). Magnesium (Mg) metal is an exceptional choice for creating BDS due to its degradability, good mechanical properties, and biocompatibility. Currently, the Magmaris® coronary stents and UNITY-BTM biliary stent have obtained Conformité Européene (CE) certification. Moreover, there are several other types of stents undergoing research and development as well as clinical trials. In this review, we discuss the required degradation cycle and the specific properties (anti-inflammatory effect, antibacterial effect, etc.) of BDS in different lumen areas based on the biocompatibility and degradability of currently available magnesium-based scaffolds. We also offer potential insights into the future development of BDS.
Collapse
Affiliation(s)
- Xiang Chen
- School of Medicine, Anhui University of Science and Technology, Huainan 232000, China;
| | - Yan Xia
- School of Stomatology, Anhui Medical College, Hefei 230601, China;
| | - Sheng Shen
- Department of Biliary Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (S.S.); (R.Z.); (T.S.)
- Shanghai Engineering Research Center of Biliary Tract Minimal Invasive Surgery and Materials, Shanghai 200032, China;
| | - Chunyan Wang
- Shanghai Engineering Research Center of Biliary Tract Minimal Invasive Surgery and Materials, Shanghai 200032, China;
- Department of General Surgery, Shanghai Xuhui Central Hospital, Shanghai 200031, China
| | - Rui Zan
- Department of Biliary Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (S.S.); (R.Z.); (T.S.)
- Shanghai Engineering Research Center of Biliary Tract Minimal Invasive Surgery and Materials, Shanghai 200032, China;
| | - Han Yu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; (H.Y.); (S.Y.)
| | - Shi Yang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; (H.Y.); (S.Y.)
| | - Xiaohong Zheng
- Department of Hepatopancreatobiliary Surgery, Huainan Xinhua Hospital Affiliated to Anhui University of Science and Technology, Huainan 232000, China; (X.Z.); (J.Y.)
| | - Jiankang Yang
- Department of Hepatopancreatobiliary Surgery, Huainan Xinhua Hospital Affiliated to Anhui University of Science and Technology, Huainan 232000, China; (X.Z.); (J.Y.)
| | - Tao Suo
- Department of Biliary Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (S.S.); (R.Z.); (T.S.)
- Shanghai Engineering Research Center of Biliary Tract Minimal Invasive Surgery and Materials, Shanghai 200032, China;
| | - Yaqi Gu
- School of Medicine, Anhui University of Science and Technology, Huainan 232000, China;
- Department of Hepatopancreatobiliary Surgery, Huainan Xinhua Hospital Affiliated to Anhui University of Science and Technology, Huainan 232000, China; (X.Z.); (J.Y.)
| | - Xiaonong Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; (H.Y.); (S.Y.)
| |
Collapse
|
3
|
Haude M, Wlodarczak A, van der Schaaf RJ, Torzewski J, Ferdinande B, Escaned J, Iglesias JF, Bennett J, Toth GG, Joner M, Toelg R, Wiemer M, Olivecrano G, Vermeersch P, Garcia-Garcia HM, Waksman R. A new resorbable magnesium scaffold for de novo coronary lesions (DREAMS 3): one-year results of the BIOMAG-I first-in-human study. EUROINTERVENTION 2023; 19:e414-e422. [PMID: 37334655 PMCID: PMC10397670 DOI: 10.4244/eij-d-23-00326] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/11/2023] [Indexed: 06/20/2023]
Abstract
BACKGROUND The third-generation coronary sirolimus-eluting magnesium scaffold, DREAMS 3G, is a further development of the DREAMS 2G (commercial name Magmaris), aiming to provide performance outcomes similar to drug-eluting stents (DES). AIMS The BIOMAG-I study aims to assess the safety and performance of this new-generation scaffold. METHODS This is a prospective, multicentre, first-in-human study with clinical and imaging follow-up scheduled at 6 and 12 months. The clinical follow-up will continue for 5 years. RESULTS A total of 116 patients with 117 lesions were enrolled. At 12 months, after completion of resorption, in-scaffold late lumen loss was 0.24±0.36 mm (median 0.19, interquartile range 0.06-0.36). The minimum lumen area was 4.95±2.24 mm² by intravascular ultrasound and 4.68±2.32 mm² by optical coherence tomography. Three target lesion failures were reported (2.6%, 95% confidence interval: 0.9-7.9), all clinically driven target lesion revascularisations. Cardiac death, target vessel myocardial infarction and definite or probable scaffold thrombosis were absent. CONCLUSIONS Data at the end of the resorption period of DREAMS 3G showed that the third-generation bioresorbable magnesium scaffold is clinically safe and effective, making it a possible alternative to DES. CLINICALTRIALS gov: NCT04157153.
Collapse
Affiliation(s)
- Michael Haude
- Medical Clinic I, Rheinland Klinikum Neuss GmbH, Lukaskrankenhaus, Neuss, Germany
| | - Adrian Wlodarczak
- Department of Cardiology, Miedziowe Centrum Zdrowia SA, Lubin, Poland
| | | | - Jan Torzewski
- Cardiovascular Center Oberallgäu-Kempten, Kempten, Germany
| | - Bert Ferdinande
- Department of Cardiology, Ziekenhuis Oost Limburg (ZOL), Genk, Belgium
| | - Javier Escaned
- Division of Cardiology, Hospital Clinico San Carlos IdISSC, Complutense University of Madrid, Madrid, Spain
| | - Juan F Iglesias
- Cardiology Division, University Hospital of Geneva, Geneva, Switzerland
| | - Johan Bennett
- Department of Cardiovascular Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Gabor G Toth
- Division of Cardiology, Medical University Graz, Graz, Austria
| | - Michael Joner
- Klinik für Herz- und Kreislauferkrankungen, Deutsches Herzzentrum München, München, Germany, and Deutsches Zentrum für Herz- und Kreislauf-Forschung (DZHK) e.V. Partner Site Munich Heart Alliance, Munich, Germany
| | - Ralph Toelg
- Cardiology Department, Heart Center Segeberger Kliniken, Bad Segeberg, Germany
| | - Marcus Wiemer
- Department of Cardiology and Intensive Care, Johannes Wesling University Hospital, Ruhr University Bochum, Minden, Germany
| | - Göran Olivecrano
- Department of Cardiology, Skåne University Hospital, Lund, Sweden
| | | | | | - Ron Waksman
- Interventional Cardiology, MedStar Washington Hospital Center, Washington, D.C., USA
| |
Collapse
|
4
|
Haude M, Wlodarczak A, van der Schaaf RJ, Torzewski J, Ferdinande B, Escaned J, Iglesias JF, Bennett J, Toth G, Joner M, Toelg R, Wiemer M, Olivecrona G, Vermeersch P, Garcia-Garcia HM, Waksman R. Safety and performance of the third-generation drug-eluting resorbable coronary magnesium scaffold system in the treatment of subjects with de novo coronary artery lesions: 6-month results of the prospective, multicenter BIOMAG-I first-in-human study. EClinicalMedicine 2023; 59:101940. [PMID: 37113674 PMCID: PMC10126775 DOI: 10.1016/j.eclinm.2023.101940] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/16/2023] [Accepted: 03/16/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND A third-generation coronary drug-eluting resorbable magnesium scaffold (DREAMS 3G) was developed to enhance the performance of previous scaffold generations and achieve angiographic outcomes comparable to those of contemporary drug-eluting stents. METHODS This prospective, multicenter, non-randomized, first-in-human study was conducted at 14 centers in Europe. Eligible patients had stable or unstable angina, documented silent ischemia, or non-ST-elevation myocardial infarction, and a maximum of two single de novo lesions in two separate coronary arteries with a reference vessel diameter between 2.5 mm and 4.2 mm. Clinical follow-up was scheduled at one, six and 12 months and annually thereafter until five years. Invasive imaging assessments were scheduled six and 12 months postoperatively. The primary endpoint was angiographic in-scaffold late lumen loss at six months. This trial was registered at ClinicalTrials.gov (NCT04157153). FINDINGS Between April 2020 and February 2022, 116 patients with 117 coronary artery lesions were enrolled. At six months, in-scaffold late lumen loss was 0.21 mm (SD 0.31). Intravascular ultrasound assessment showed preservation of the scaffold area (mean 7.59 mm2 [SD 2.21] post-procedure vs 6.96 mm2 [SD 2.48]) at six months) with a low mean neointimal area (0.02 mm2 [SD 0.10]). Optical coherence tomography revealed that struts were embedded in the vessel wall and were already hardly discernible at six months. Target lesion failure occurred in one (0.9%) patient; a clinically driven target lesion revascularization was performed on post-procedure day 166. No definite or probable scaffold thrombosis or myocardial infarction was observed. INTERPRETATION These findings show that the implantation of DREAMS 3G in de novo coronary lesions is associated with favorable safety and performance outcomes, comparable to contemporary drug-eluting stents. FUNDING This study was funded by BIOTRONIK AG.
Collapse
Affiliation(s)
- Michael Haude
- Medical Clinic I, Rheinland Klinikum Neuss GmbH, Lukaskrankenhaus, Neuss, Germany
| | - Adrian Wlodarczak
- Department of Cardiology, Miedziowe Centrum Zdrowia SA, Lubin, Poland
| | | | | | - Bert Ferdinande
- Department of Cardiology, Ziekenhuis Oost Limburg (ZOL), Genk, Belgium
| | - Javier Escaned
- Division of Cardiology, Hospital Clinico San Carlos IDISSC, Complutense University of Madrid, Madrid, Spain
| | - Juan F. Iglesias
- Cardiology Division, University Hospital of Geneva, Geneva, Switzerland
| | - Johan Bennett
- Department of Cardiovascular Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Gabor Toth
- Division Cardiology, Medical University Graz, Graz, Austria
| | - Michael Joner
- Klinik für Herz- und Kreislauferkrankungen, Deutsches Herzzentrum München, München, Germany
- Deutsches Zentrum für Herz- und Kreislauf-Forschung (DZHK) e.V. (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Ralph Toelg
- Cardiology Department, Heart Center Segeberger Kliniken, Bad Segeberg, Germany
| | - Marcus Wiemer
- Department of Cardiology and Intensive Care, Johannes Wesling University Hospital Ruhr University Bochum, Minden, Germany
| | - Göran Olivecrona
- Department of Cardiology, Skane University Hospital, Lund, Sweden
| | - Paul Vermeersch
- Interventional Cardiology ZNA Middelheim, Antwerpen, Belgium
| | | | - Ron Waksman
- Interventional Cardiology, MedStar Washington Hospital Center, Washington DC, USA
| |
Collapse
|
5
|
Rola P, Włodarczak S, Doroszko A, Lesiak M, Włodarczak A. The bioresorbable magnesium scaffold (Magmaris)-State of the art: From basic concept to clinical application. Catheter Cardiovasc Interv 2022; 100:1051-1058. [PMID: 36229949 DOI: 10.1002/ccd.30435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/07/2022] [Accepted: 10/02/2022] [Indexed: 11/08/2022]
Abstract
Since its introduction to clinical practice, coronary artery stent implantation has become a crucial part of the therapy of coronary artery disease (CAD). Despite the undeniable evolution of percutaneous coronary revascularization procedures, drug-eluting stent (DES) technology shows some limitations. To overcome these limitations bioresorbable vascular scaffolds (BRS) were designed as a vessel-supporting technology allowing for anatomical and functional restoration of the vessel after the scaffold intended resorption. Various materials have been proposed as the basis of the scaffold backbone. In this narrative review, we present second-generation magnesium-alloy bioresorbable scaffold devices (Magmaris; Biotronik). Additionally, we discuss available preclinical and clinical data regarding this new magnesium BRS.
Collapse
Affiliation(s)
- Piotr Rola
- Faculty of Health Science and Physical Culture, Witelon Collegium State University, Legnica, Poland.,Department of Cardiology, Provincial Specialized Hospital in Legnica, Legnica, Poland
| | - Szymon Włodarczak
- Department of Cardiology, The Copper Health Centre (MCZ), Lubin, Poland
| | - Adrian Doroszko
- Clinical Department of Internal and Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, Wrocław, Poland
| | - Maciej Lesiak
- 1st Department of Cardiology, Poznan University of Medical Sciences, Poznań, Poland
| | - Adrian Włodarczak
- Faculty of Health Science and Physical Culture, Witelon Collegium State University, Legnica, Poland.,Department of Cardiology, The Copper Health Centre (MCZ), Lubin, Poland
| |
Collapse
|
6
|
Gallinoro E, Almendarez M, Alvarez-Velasco R, Barbato E, Avanzas P. Bioresorbable stents: Is the game over? Int J Cardiol 2022; 361:20-28. [DOI: 10.1016/j.ijcard.2022.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/08/2022] [Accepted: 05/11/2022] [Indexed: 11/30/2022]
|
7
|
King SB. Have Stents Gone About as Far as They Can Go? CARDIOVASCULAR REVASCULARIZATION MEDICINE 2022; 34:154-155. [DOI: 10.1016/j.carrev.2021.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 10/28/2021] [Indexed: 11/15/2022]
|
8
|
Sustained safety and efficacy of magnesium reabsorbable scaffold. 2-year follow-up analysis from first Magmaris multicenter Italian registry. CARDIOVASCULAR REVASCULARIZATION MEDICINE 2022; 41:69-75. [DOI: 10.1016/j.carrev.2022.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 11/23/2022]
|