• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4595849)   Today's Articles (2469)   Subscriber (49336)
For: Zhang A, Zhu A, Chen B, Zhang S, Au C, Shi C. In-situ synthesis of nickel modified molybdenum carbide catalyst for dry reforming of methane. CATAL COMMUN 2011. [DOI: 10.1016/j.catcom.2011.01.019] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]  Open
Number Cited by Other Article(s)
1
Zheng X, Ai T, Hu Y, Xu Z, Li Y, Jiang H, Luo Y. Influence of Carbonization Conditions on Structural and Surface Properties of K-Doped Mo2C Catalysts for the Synthesis of Methyl Mercaptan from CO/H2/H2S. NANOMATERIALS (BASEL, SWITZERLAND) 2023;13:2602. [PMID: 37764631 PMCID: PMC10535927 DOI: 10.3390/nano13182602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023]
2
Saconsint S, Srifa A, Koo-Amornpattana W, Assabumrungrat S, Sano N, Fukuhara C, Ratchahat S. Development of Ni-Mo carbide catalyst for production of syngas and CNTs by dry reforming of biogas. Sci Rep 2023;13:12928. [PMID: 37558901 PMCID: PMC10412613 DOI: 10.1038/s41598-023-38436-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/07/2023] [Indexed: 08/11/2023]  Open
3
Rostami M, Farajollahi AH, Amirkhani R, Farshchi ME. A review study on methanol steam reforming catalysts: Evaluation of the catalytic performance, characterizations, and operational parameters. AIP ADVANCES 2023;13:030701. [DOI: 10.1063/5.0137706] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/26/2023] [Indexed: 08/28/2023]
4
Wang H, Diao Y, Gao Z, Smith KJ, Guo X, Ma D, Shi C. H2 Production from Methane Reforming over Molybdenum Carbide Catalysts: From Surface Properties and Reaction Mechanism to Catalyst Development. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
5
Balogun ML, Gambo Y, Adamu S, Ba‐Shammakh MS, Hossain MM. Kinetic modeling of oxidative dehydrogenation of Propane with CO 2 over MoO x /La 2 O 3 ‐Al 2 O 3 in a Fluidized Bed. AIChE J 2022. [DOI: 10.1002/aic.17903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
6
Effect of the NiO particle size on the activity of Mo/HZSM-5 catalyst physically mixed with NiO in methane dehydroaromatization. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
7
Torrez-Herrera JJ, Korili SA, Gil A. Recent progress in the application of Ni-based catalysts for the dry reforming of methane. CATALYSIS REVIEWS 2021. [DOI: 10.1080/01614940.2021.2006891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
8
Wang LX, Wang L, Xiao FS. Tuning product selectivity in CO2 hydrogenation over metal-based catalysts. Chem Sci 2021;12:14660-14673. [PMID: 34820082 PMCID: PMC8597847 DOI: 10.1039/d1sc03109k] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/06/2021] [Indexed: 11/21/2022]  Open
9
Han B, Zhong J, Li W, Zhang Z, Bi G, Xie J. The promotional role of β-cyclodextrin on Ni-Mo2C/MgO catalyst for biogas reforming. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111897] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
10
Reynard D, Nagar B, Girault H. Photonic Flash Synthesis of Mo2C/Graphene Electrocatalyst for the Hydrogen Evolution Reaction. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00770] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
11
Simple Synthesis of Molybdenum Carbides from Molybdenum Blue Nanoparticles. NANOMATERIALS 2021;11:nano11040873. [PMID: 33808113 PMCID: PMC8066837 DOI: 10.3390/nano11040873] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 11/17/2022]
12
Zhang L, Yang Y, Yao Z, Yan S, Kang X. Finding of a new cycle route in Ni/Mo2C catalyzed CH4–CO2 reforming. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02428g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
13
Heracleous E, Koidi V, Lappas AA. CO2 conversion over Cu–Mo2C catalysts: effect of the Cu promoter and preparation method. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02021d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
14
Gavrilova N, Dyakonov V, Myachina M, Nazarov V, Skudin V. Synthesis of Mo2C by Thermal Decomposition of Molybdenum Blue Nanoparticles. NANOMATERIALS 2020;10:nano10102053. [PMID: 33081415 PMCID: PMC7602951 DOI: 10.3390/nano10102053] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/10/2020] [Accepted: 10/15/2020] [Indexed: 01/19/2023]
15
Yang Q, Qiu R, Ma X, Hou R, Sun K. Surface reconstruction and the effect of Ni-modification on the selective hydrogenation of 1,3-butadiene over Mo2C-based catalysts. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00402b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
16
Takeda K, Yamaguchi A, Cho Y, Anjaneyulu O, Fujita T, Abe H, Miyauchi M. Metal Carbide as A Light-Harvesting and Anticoking Catalysis Support for Dry Reforming of Methane. GLOBAL CHALLENGES (HOBOKEN, NJ) 2020;4:1900067. [PMID: 31956431 PMCID: PMC6957020 DOI: 10.1002/gch2.201900067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/09/2019] [Indexed: 06/10/2023]
17
Wu W, Liu Q, Shi Y, Yao Z, Ding W, Dou B. Binary and ternary transition metal phosphides for dry reforming of methane. REACT CHEM ENG 2020. [DOI: 10.1039/d0re00027b] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
18
Large Specific Surface Area Macroporous Nanocast LaFe1−xNixO3: A Stable Catalyst for Catalytic Methane Dry Reforming. J CHEM-NY 2019. [DOI: 10.1155/2019/7851416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]  Open
19
Promoting Effect of Boron on the Stability and Activity of Ni/Mo2C Catalyst for Hydrogenation of Alkali Lignin. Catal Letters 2018. [DOI: 10.1007/s10562-018-2395-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
20
Wan W, Tackett BM, Chen JG. Reactions of water and C1 molecules on carbide and metal-modified carbide surfaces. Chem Soc Rev 2018;46:1807-1823. [PMID: 28229154 DOI: 10.1039/c6cs00862c] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
21
Yao L, Wang Y, Galvez ME, Hu C, Da Costa P. Ni–Mo 2 C supported on alumina as a substitute for Ni–Mo reduced catalysts supported on alumina material for dry reforming of methane. CR CHIM 2018. [DOI: 10.1016/j.crci.2017.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
22
Gao H, Yao Z, Shi Y, Jia R, Liang F, Sun Y, Mao W, Wang H. Simple and large-scale synthesis of β-phase molybdenum carbides as highly stable catalysts for dry reforming of methane. Inorg Chem Front 2018. [DOI: 10.1039/c7qi00532f] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
23
Bao Z, Yu F. Catalytic Conversion of Biogas to Syngas via Dry Reforming Process. ADVANCES IN BIOENERGY 2018. [DOI: 10.1016/bs.aibe.2018.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
24
Gao H, Yao Z, Shi Y, Wang S. Improvement of the catalytic stability of molybdenum carbide via encapsulation within carbon nanotubes in dry methane reforming. Catal Sci Technol 2018. [DOI: 10.1039/c7cy02506h] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
25
Moyer MM, Karakaya C, Kee RJ, Trewyn BG. In Situ Formation of Metal Carbide Catalysts. ChemCatChem 2017. [DOI: 10.1002/cctc.201700304] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
26
Kislov VR, Skudin VV, Adamu A. New bimetallic Mo2C–WC/Al2O3 membrane catalysts in the dry reforming of methane. KINETICS AND CATALYSIS 2017. [DOI: 10.1134/s0023158417010049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
27
Boukhlouf H, Barama A, Benrabaa R, Caballero JG, Löfberg A, Bordes-Richard E. Catalytic activity in the oxidative dehydrogenation of ethane over Ni and/or Co molybdate catalysts: Synthesis and characterization. CR CHIM 2017. [DOI: 10.1016/j.crci.2016.02.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
28
Liang P, Gao H, Yao Z, Jia R, Shi Y, Sun Y, Fan Q, Wang H. Simple synthesis of ultrasmall β-Mo2C and α-MoC1−x nanoparticles and new insights into their catalytic mechanisms for dry reforming of methane. Catal Sci Technol 2017. [DOI: 10.1039/c7cy00708f] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
29
Morphology effect of zirconia support on the catalytic performance of supported Ni catalysts for dry reforming of methane. CHINESE JOURNAL OF CATALYSIS 2016. [DOI: 10.1016/s1872-2067(16)62540-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
30
Huo X, Wang Z, Huang J, Zhang R, Fang Y. Bulk Mo and Co–Mo carbides as catalysts for methanation. CATAL COMMUN 2016. [DOI: 10.1016/j.catcom.2016.03.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]  Open
31
Yao Z, Jiang J, Zhao Y, Luan F, Zhu J, Shi Y, Gao H, Wang H. Insights into the deactivation mechanism of metal carbide catalysts for dry reforming of methane via comparison of nickel-modified molybdenum and tungsten carbides. RSC Adv 2016. [DOI: 10.1039/c5ra24815a] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]  Open
32
Yao Z, Luan F, Sun Y, Jiang B, Song J, Wang H. Molybdenum phosphide as a novel and stable catalyst for dry reforming of methane. Catal Sci Technol 2016. [DOI: 10.1039/c6cy00836d] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
33
Catalytic role of β-Mo2C in DRM catalysts that contain Ni and Mo. Catal Today 2015. [DOI: 10.1016/j.cattod.2015.01.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
34
Ma Y, Guan G, Hao X, Zuo Z, Huang W, Phanthong P, Li X, Kusakabe K, Abudula A. Embedded structure catalyst: a new perspective from noble metal supported on molybdenum carbide. RSC Adv 2015. [DOI: 10.1039/c4ra15226c] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]  Open
35
Li W, Zhao Z, Ren P, Wang G. Effect of molybdenum carbide concentration on the Ni/ZrO2 catalysts for steam-CO2 bi-reforming of methane. RSC Adv 2015. [DOI: 10.1039/c5ra22237k] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]  Open
36
Shi C, Zhang S, Li X, Zhang A, Shi M, Zhu Y, Qiu J, Au C. Synergism in NiMoOx precursors essential for CH4/CO2 dry reforming. Catal Today 2014. [DOI: 10.1016/j.cattod.2013.10.076] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
37
Zeng S, Fu X, Wang X, Su H. Effect of Precursor Concentration on CeO2/Co3O4 Catalysts for CH4/CO2 Reforming. Catal Letters 2013. [DOI: 10.1007/s10562-013-1160-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
38
Renewable Syngas Production via Dry Reforming of Methane. CO2: A VALUABLE SOURCE OF CARBON 2013. [DOI: 10.1007/978-1-4471-5119-7_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA