1
|
Ahmad I, Kedhim M, Jadeja Y, Sangwan G, V K, Kashyap A, Shomurotova S, Kazemi M, Javahershenas R. A comprehensive review on carbonylation reactions: catalysis by magnetic nanoparticle-supported transition metals. NANOSCALE ADVANCES 2025:d5na00040h. [PMID: 40303976 PMCID: PMC12035756 DOI: 10.1039/d5na00040h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/13/2025] [Indexed: 05/02/2025]
Abstract
Magnetic catalysts have become a crucial innovation in carbonylation reactions, providing a sustainable and highly efficient means of synthesizing compounds that contain carbonyl groups. This review article explores the diverse and significant role of magnetic catalysts in various carbonylation processes, emphasizing their essential contributions to improving reaction rates, selectivity, and recyclability of catalysts. The distinctive magnetic properties of these catalysts enable straightforward separation and recovery, a feature that significantly mitigates waste and reduces environmental impact. As a result, magnetic catalysts' environmental and economic advantages position them as key players in contemporary synthetic chemistry, driving the evolution of green chemistry practices. Particularly noteworthy is the combination of magnetic nanoparticles with transition metals, resulting in the development of robust catalytic systems that exploit the complementary effects of magnetism and catalysis. Recent advances have showcased the adaptability of magnetic nanoparticles supported by transition metal catalysts in various carbonylation reactions, including carbonylative coupling, alkoxy carbonylation, thio carbonylation, and amino carbonylation. This review meticulously examines the mechanistic aspects of how magnetic fields influenced catalytic performance between 2014 and the end of 2024.
Collapse
Affiliation(s)
- Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University Abha Saudi Arabia
| | - Munthar Kedhim
- College of Pharmacy, The Islamic University Najaf Iraq
- Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University of Al Diwaniyah Al Diwaniyah Iraq
- Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University of Babylon Babylon Iraq
| | - Yashwantsinh Jadeja
- Marwadi University Research Center, Department of Chemistry, Faculty of Science, Marwadi University Rajkot 360003 Gujarat India
| | - Gargi Sangwan
- Chitkara Centre for Research and Development, Chitkara University Baddi Himachal Pradesh 174103 India
| | - Kavitha V
- Department of Chemistry, Sathyabama Institute of Science and Technology Chennai Tamil Nadu India
| | - Aditya Kashyap
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University Rajpura 140401 Punjab India
| | - Shirin Shomurotova
- Department of Chemistry Teaching Methods, Tashkent State Pedagogical University named after Nizami Bunyodkor Street 27 Tashkent Uzbekistan
| | - Mosstafa Kazemi
- Young Researchers and Elite Club, Islamic Azad University Tehran Branch Tehran Iran
| | | |
Collapse
|
2
|
Mondal M, Saha A. Dithiocarbamate as a Carbonyl Alternative in Pd-Catalyzed Carbonylative Homocoupling of Organoboronic Acids. J Org Chem 2025; 90:52-58. [PMID: 39701947 DOI: 10.1021/acs.joc.4c01678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
We have developed a novel protocol for carbonylative homocoupling of arylboronic acids using dithiocarbamate esters as the carbonyl alternative. A series of arylboronic acids underwent smooth reaction with dithiocarbamate ester (Me2NCS2Me) in the presence of Pd(PPh3)2Cl2 catalyst, Cu(OAc)2·H2O additive, and Na2CO3 in DCE solvent, producing the biaryl ketones efficiently. The mechanism has been studied with the help of several control experiments that reveal the probability of thioamide intermediacy. Chemoselective homocoupling allows the postsynthetic modification of the product.
Collapse
Affiliation(s)
- Manas Mondal
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Amit Saha
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
3
|
Bhattacherjee D, Rahman M, Ghosh S, Bagdi AK, Zyryanov GV, Chupakhin ON, Das P, Hajra A. Advances in Transition‐Metal Catalyzed Carbonylative Suzuki‐Miyaura Coupling Reaction: An Update. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001509] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Dhananjay Bhattacherjee
- Department of Organic & Biomolecular Chemistry, Chemical Engineering Institute Ural Federal University 19 Mira Str. 620002 Yekaterinburg Russian Federation
| | - Matiur Rahman
- Department of Organic & Biomolecular Chemistry, Chemical Engineering Institute Ural Federal University 19 Mira Str. 620002 Yekaterinburg Russian Federation
| | - Sumit Ghosh
- Department of Chemistry Visva-Bharati (A Central University) Santiniketan 731235 India
| | - Avik Kumar Bagdi
- Department of Chemistry University of Kalyani Kalyani Nadia-741235 India
| | - Grigory V. Zyryanov
- Department of Organic & Biomolecular Chemistry, Chemical Engineering Institute Ural Federal University 19 Mira Str. 620002 Yekaterinburg Russian Federation
- I. Ya. Postovskiy Institute of Organic Synthesis Ural Division of the Russian Academy of Sciences 22 S. Kovalevskoy Str. Yekaterinburg 620219 Russian Federation
| | - Oleg N. Chupakhin
- Department of Organic & Biomolecular Chemistry, Chemical Engineering Institute Ural Federal University 19 Mira Str. 620002 Yekaterinburg Russian Federation
- I. Ya. Postovskiy Institute of Organic Synthesis Ural Division of the Russian Academy of Sciences 22 S. Kovalevskoy Str. Yekaterinburg 620219 Russian Federation
| | - Pralay Das
- Natural Product Chemistry and Process Development Division CSIR-Institute of Himalayan Bioresource Technology Palampur 176061 H.P India
- Academy of Scientific and Innovative Research New Delhi India
| | - Alakananda Hajra
- Department of Chemistry Visva-Bharati (A Central University) Santiniketan 731235 India
| |
Collapse
|
4
|
Söğütlü I, Mahmood EA, Ahmadizadeh Shendy S, Ebrahimiasl S, Vessally E. Recent progress in application of nanocatalysts for carbonylative Suzuki cross-coupling reactions. RSC Adv 2021; 11:2112-2125. [PMID: 35424173 PMCID: PMC8693787 DOI: 10.1039/d0ra09846a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 12/15/2020] [Indexed: 12/31/2022] Open
Abstract
In the past few decades, cross-coupling of aryl halides and arylboronic acids in the presence of carbon monoxide (CO), also called carbonylative Suzuki coupling, to form two new carbon-carbon bonds in the production of synthetically and biologically important biaryl ketones, has been widely studied. Consequently, various catalytic systems have been extensively investigated in order to maximize the efficiency of this appealing area of biaryl ketone synthesis. As evidenced in the literature, nanometal-based systems are among the most powerful catalysts for this transformation as their large surface area to volume ratio and reactive morphologies allow faster reaction rates under milder CO pressure even at very low catalyst loadings. This review aims to provide an overview of the recent advances and achievements in the application of nano-sized metal catalysts for carbonylative Suzuki cross-coupling reactions, which may serve as an inspiration to researchers in their future work.
Collapse
Affiliation(s)
- Inci Söğütlü
- Republic of Turkey Ministry of Agriculture and Forestry Ankara Turkey
| | - Evan Abdulkarim Mahmood
- College of Health Sciences, University of Human Development Sulaimaniyah Kurdistan region of Iraq Iraq
| | | | - Saeideh Ebrahimiasl
- Department of Chemistry, Ahar Branch, Islamic Azad University Ahar Iran
- Industrial Nanotechnology Research Center, Tabriz Branch, Islamic Azad University Tabriz Iran
| | - Esmail Vessally
- Department of Chemistry, Payame Noor University P.O. Box 19395-3697 Tehran Iran
| |
Collapse
|
5
|
Baccon-Sollier PL, Malki Y, Maye M, Ali LMA, Lichon L, Cuq P, Vincent LA, Masurier N. Imidazopyridine-fused [1,3]diazepinones: modulations of positions 2 to 4 and their impacts on the anti-melanoma activity. J Enzyme Inhib Med Chem 2020; 35:935-949. [PMID: 32249633 PMCID: PMC7170309 DOI: 10.1080/14756366.2020.1748024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
A series of 19 novel pyrido-imidazodiazepinones, with modulations of positions 2, 3 and 4 of the diazepine ring were synthesised and screened for their in vitro cytotoxic activities against two melanoma cell lines (A375 and MDA-MB-435) and for their potential toxicity against NIH-3T3 non-cancerous cells. Selected compounds were also evaluated on the NCI-60 cell line panel. The SAR study revealed that the molecular volume and the cLogP of compounds modified at position 2 were significantly correlated with the activity of these compounds on melanoma cell lines. Moreover, introduction of a heterocyclic group at position 2 or an azido-alkyl chain at position 4 led to compounds displaying a significantly different activity profile on the NCI-60 cell line panel, compared to phenyl-substituted compounds at position 2 of the diazepinone. This study provides us crucial information for the development of new derivatives active against melanoma.
Collapse
Affiliation(s)
- Paul Le Baccon-Sollier
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS, Universités Montpellier, UFR des Sciences Pharmaceutiques et Biologiques, Montpellier, France
| | - Yohan Malki
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS, Universités Montpellier, UFR des Sciences Pharmaceutiques et Biologiques, Montpellier, France
| | - Morgane Maye
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS, Universités Montpellier, UFR des Sciences Pharmaceutiques et Biologiques, Montpellier, France
| | - Lamiaa M A Ali
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS, Universités Montpellier, UFR des Sciences Pharmaceutiques et Biologiques, Montpellier, France.,Department of Biochemistry, Medical Research Institute, University of Alexandria, Alexandria, Egypt
| | - Laure Lichon
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS, Universités Montpellier, UFR des Sciences Pharmaceutiques et Biologiques, Montpellier, France
| | - Pierre Cuq
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS, Universités Montpellier, UFR des Sciences Pharmaceutiques et Biologiques, Montpellier, France
| | - Laure-Anaïs Vincent
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS, Universités Montpellier, UFR des Sciences Pharmaceutiques et Biologiques, Montpellier, France
| | - Nicolas Masurier
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS, Universités Montpellier, UFR des Sciences Pharmaceutiques et Biologiques, Montpellier, France
| |
Collapse
|
6
|
Yasukawa T, Kobayashi S, Zhu Z, Yamashita Y. Carbonylative Suzuki–Miyaura Coupling Reactions of Aryl Iodides with Readily Available Polymer-Immobilized Palladium Nanoparticles. Synlett 2020. [DOI: 10.1055/s-0040-1707243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Polysilane/alumina-supported palladium nanoparticle catalyzed carbonylative Suzuki–Miyaura coupling reactions under ligand-free conditions have been developed to synthesize diaryl ketones. High yields and selectivities were achieved even with low catalyst loading under atmospheric pressure of CO gas. A variety of aryl iodides and arylboronic acids could be utilized to afford the diaryl ketones in excellent yields. Moreover, the ligand-free immobilized palladium nanoparticles could be recovered by simple filtration and the catalytic activity could be maintained for several runs.
Collapse
|
7
|
Qing W, Liu F, Yao H, Sun S, Chen C, Zhang W. Functional catalytic membrane development: A review of catalyst coating techniques. Adv Colloid Interface Sci 2020; 282:102207. [PMID: 32688044 DOI: 10.1016/j.cis.2020.102207] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/02/2020] [Accepted: 07/04/2020] [Indexed: 12/18/2022]
Abstract
Catalytic membranes combine catalytic activity with conventional filtration membranes, thus enabling diverse attractive benefits into the conventional membrane filtration processes, such as easy catalyst reuse, antifouling, anti-microbial, and enhancing process efficiency. Up to date, tremendous progresses have been made on functional catalytic membrane preparation and applications, which significantly advances the competitiveness of membrane technologies in process industries. The present article provides a critical and holistic overview of the current state of knowledge on existing catalyst coating techniques for functional catalytic membrane development. Based on coating mechanisms, the techniques are generally categorized into physical and chemical surface coating routes. For each technique, we first introduce fundamental principle, followed by a critical discussion of their applications with representative case studies. Advantages and drawbacks are also emphasized for different surface coating technologies. Finally, future perspectives are highlighted to provide deep insights into their future developments.
Collapse
Affiliation(s)
- Weihua Qing
- Beijing International Science and Technology Cooperation Base for Antibiotics and Resistance Genes Control, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China; Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ 07102, United States of America
| | - Fang Liu
- Beijing International Science and Technology Cooperation Base for Antibiotics and Resistance Genes Control, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Hong Yao
- Beijing International Science and Technology Cooperation Base for Antibiotics and Resistance Genes Control, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China.
| | - Shaobin Sun
- Beijing International Science and Technology Cooperation Base for Antibiotics and Resistance Genes Control, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China; Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ 07102, United States of America
| | - Chen Chen
- Department of Municipal and Environmental Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Wen Zhang
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ 07102, United States of America
| |
Collapse
|
8
|
Mansour W, Fettouhi M, El Ali B. Novel and efficient bridged bis(
N
‐heterocyclic carbene)palladium(II) catalysts for selective carbonylative Suzuki–Miyaura coupling reactions to biaryl ketones and biaryl diketones. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Waseem Mansour
- Chemistry DepartmentKing Fahd University of Petroleum & Minerals Dhahran 31261 Saudi Arabia
| | - Mohammed Fettouhi
- Chemistry DepartmentKing Fahd University of Petroleum & Minerals Dhahran 31261 Saudi Arabia
| | - Bassam El Ali
- Chemistry DepartmentKing Fahd University of Petroleum & Minerals Dhahran 31261 Saudi Arabia
| |
Collapse
|
9
|
Gaikwad VV, Mane PA, Dey S, Bhanage BM. Xantphos‐ligated palladium dithiolates: An unprecedented and convenient catalyst for the carbonylative Suzuki–Miyaura cross‐coupling reaction with high turnover number and turnover frequency. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5255] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Vinayak V. Gaikwad
- Department of ChemistryInstitute of Chemical Technology Nathalal Parekh Marg, Matunga Mumbai 400019 India
| | - Pravin A. Mane
- Chemistry DivisionBhabha Atomic Research Centre Mumbai 400085 India
| | - Sandip Dey
- Chemistry DivisionBhabha Atomic Research Centre Mumbai 400085 India
- Training School ComplexHomi Bhabha National Institute Mumbai 400094 India
| | - Bhalchandra M. Bhanage
- Department of ChemistryInstitute of Chemical Technology Nathalal Parekh Marg, Matunga Mumbai 400019 India
| |
Collapse
|
10
|
Gaikwad VV, Mane PA, Dey S, Bhanage BM. Dppf‐Ligated Palladium Complex as an Efficient Catalyst for the Synthesis of Biaryl Ketones Using Co
2
(CO)
8
as a C1 Source with High TON and TOF. ChemistrySelect 2019. [DOI: 10.1002/slct.201901930] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Vinayak V. Gaikwad
- Department of Chemistry, Institute of Chemical TechnologyN.Parekh Marg, Matunga, Mumbai 400 019 Maharashtra India)
| | - Pravin A. Mane
- Chemistry Division, Bhabha Atomic Research Centre Mumbai 400 085 India
| | - Sandip Dey
- Chemistry Division, Bhabha Atomic Research Centre Mumbai 400 085 India
- Homi Bhabha National InstituteTraining School Complex Mumbai 400 094 India
| | - Bhalchandra M. Bhanage
- Department of Chemistry, Institute of Chemical TechnologyN.Parekh Marg, Matunga, Mumbai 400 019 Maharashtra India)
| |
Collapse
|
11
|
Synthesis and architecture of polystyrene-supported Schiff base-palladium complex: Catalytic features and functions in diaryl urea preparation in conjunction with Suzuki-Miyaura cross-coupling reaction by reductive carbonylation. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2018.09.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
12
|
Stability, structural and electronic properties of ternary Pd Au Ag clusters (x + y + z = 7): A theoretical study. COMPUT THEOR CHEM 2018. [DOI: 10.1016/j.comptc.2018.03.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|