1
|
Nuzhdin AL, Bukhtiyarova MV, Bukhtiyarova GA. Organic synthesis in flow mode by selective liquid-phase hydrogenation over heterogeneous non-noble metal catalysts. Org Biomol Chem 2024; 22:7936-7950. [PMID: 39254682 DOI: 10.1039/d4ob00873a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Flow hydrogenation performed over heterogeneous catalysts makes organic synthesis more economical, safe and environmentally friendly. Over the past two decades, a significant amount of research with a major focus on noble metal catalysts has been carried out in this area. However, catalysts based on non-noble metals (Ni, Cu, Co, etc.) are more promising for practical use due to their low cost and high availability. This review article discusses the use of supported and bulk non-noble metal catalysts for the liquid-phase hydrogenation of bi- and polyfunctional organic compounds in flow mode. The main attention is paid to the selective reduction of one functional group (NO2, CC, CN, CO, and CN) in the presence of other substituents. In addition, cascade synthetic protocols involving hydrogenation are presented.
Collapse
Affiliation(s)
- Alexey L Nuzhdin
- Boreskov Institute of Catalysis SB RAS, Novosibirsk 630090, Russia.
| | | | | |
Collapse
|
2
|
Luo R, Tong J, Ouyang L, Liu L, Liao J. One-pot reductive amination of carbonyl compounds and nitro compounds via Ir-catalyzed transfer hydrogenation. RSC Adv 2023; 13:29607-29612. [PMID: 37818258 PMCID: PMC10561669 DOI: 10.1039/d3ra05736d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 09/25/2023] [Indexed: 10/12/2023] Open
Abstract
The formation of C-N bond is a vital synthetic tool for establishing molecular diversity, which is highly sought after in a wide range of biologically active natural products and drugs. Herein, we present a new strategy for the synthesis of secondary amines via iridium-catalyzed one-pot reductive amination of carbonyl compounds with nitro compounds. This method is demonstrated for a variety of carbonyl compounds, including miscellaneous aldehydes and ketones, which are compatible with this catalytic system, and deliver the desired products in good yields under mild conditions. In this protocol, the reduction of nitro compounds occurs in situ first, followed by reductive amination to form amine products, providing a new one-pot procedure for amine synthesis.
Collapse
Affiliation(s)
- Renshi Luo
- College of Chemistry and Environmental Engineering, Shaoguan University Shaoguan 512005 P. R. China
- School of Pharmaceutical Sciences, Gannan Medical University Ganzhou 341000 Jiangxi Province P. R. China
| | - Jinghui Tong
- School of Pharmaceutical Sciences, Gannan Medical University Ganzhou 341000 Jiangxi Province P. R. China
| | - Lu Ouyang
- School of Pharmaceutical Sciences, Gannan Medical University Ganzhou 341000 Jiangxi Province P. R. China
| | - Liang Liu
- School of Pharmaceutical Sciences, Gannan Medical University Ganzhou 341000 Jiangxi Province P. R. China
| | - Jianhua Liao
- School of Pharmaceutical Sciences, Gannan Medical University Ganzhou 341000 Jiangxi Province P. R. China
| |
Collapse
|
3
|
Selective Hydrogenation of 5-Acetoxymethylfurfural over Cu-Based Catalysts in a Flow Reactor: Effect of Cu-Al Layered Double Hydroxides Synthesis Conditions on Catalytic Properties. Catalysts 2022. [DOI: 10.3390/catal12080878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cu-containing layered double hydroxides (LDHs) were synthesized by a co-precipitation method at different reaction conditions, such as aging time, pH, precipitation rate and synthesis temperature. The effect of these parameters on the structure and chemical composition of the catalysts were investigated using a set of physical methods, including thermogravimetric analysis (TGA), X-ray diffraction (XRD), H2-TPR and in situ X-ray photoelectron spectroscopy (XPS). It allowed for checking of the reducibility of the samples. 5-Acetoxymethylfurfural was catalytically hydrogenated to 5-(acetoxymethyl)-2-furanmethanol (AMFM) over Cu-containing catalysts synthesized from layered double hydroxides so as to investigate its catalytic properties in flow reaction. It was shown that synthesis pH decreasing from 10 to 8 resulted in rise of AMF conversion that coincided with the higher surface Cu/Al ratio obtained by XPS. Preferable aging time of LDH materials for obtaining the most active catalyst was 2 h, an amount of time that favored the production of the catalyst with high surface Cu/Al ratio up to 0.38. Under optimized reaction conditions, the AMFM yield was 98%. Finally, a synthesis strategy for the preparation of highly efficient Cu-based hydrogenation catalyst with optimized characteristics is suggested.
Collapse
|
4
|
Shao F, Wang X, Zhao Z, Wei Z, Zhong X, Yao Z, Deng S, Wang S, Wang H, Li A, Wang J. Ru Cluster-Decorated Cu Nanoparticles Enhanced Selectivity to Imine from One-Pot Cascade Transformations. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Fangjun Shao
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Xiaojian Wang
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Zijiang Zhao
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Zhongzhe Wei
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Xing Zhong
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Zihao Yao
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Shenwei Deng
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Shibin Wang
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Hong Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Aiyuan Li
- Zhejiang Collaborative Innovation Center for High Value Utilization of byproducts from Ethylene Project, Ningbo Polytechnic, Ningbo, Zhejiang 315800, P. R. China
| | - Jianguo Wang
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
5
|
Zhu H, David Wang W, Li F, Sun X, Li B, Song Q, Kou J, Ma K, Ren X, Dong Z. Facile preparation of ultrafine Pd nanoparticles anchored on covalent triazine frameworks catalysts for efficient N-alkylation. J Colloid Interface Sci 2022; 606:1340-1351. [PMID: 34500150 DOI: 10.1016/j.jcis.2021.08.059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/03/2021] [Accepted: 08/08/2021] [Indexed: 01/25/2023]
Abstract
The fabrication of stable and efficient catalysts for green and economic catalytic transformation is significant. Here, highly stable covalent triazine frameworks (CTF-1) were used as the supporting material for anchoring ultrafine Pd nanoparticles (NPs) via a facile impregnation process and a one-pot calcination-reduction strategy. The widespread dispersion of ultrafine Pd NPs was a result of the abundant high nitrogen-content triazine groups of CTF-1 that endowed the catalyst Pd@CTF-1 with high catalytic activity. The catalytic performance of Pd@CTF-1 was demonstrated by the one-pot N-alkylation of benzaldehyde with aniline (or nitrobenzene) under mild reaction conditions, and Pd@CTF-1 exhibited a wide range of general applicability for N-alkylation reactions. The reaction mechanism for the N-alkylation reaction was also studied in detail. In addition, the Pd@CTF-1 catalyst exhibited high thermal and chemical stability, maintaining good catalytic efficiency after multiple reaction cycles. This study provides new insights for the fabrication of organic supporting materials with highly dispersed active catalytic sites that can lead to excellent catalytic performance for efficient, economical, and green reactions.
Collapse
Affiliation(s)
- Hanghang Zhu
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Wei David Wang
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China.
| | - Feng Li
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, PR China
| | - Xun Sun
- Shandong Applied Research Center of Gold Nanotechnology (Au-SDARC), School of Chemistry & Chemical Engineering, Yantai University, Yantai 264005, PR China
| | - Boyang Li
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Qiang Song
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Jinfang Kou
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Kexin Ma
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Xuanguang Ren
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Zhengping Dong
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
6
|
Mäki-Arvela P, Simakova IL, Murzin DY. One-pot amination of aldehydes and ketones over heterogeneous catalysts for production of secondary amines. CATALYSIS REVIEWS 2021. [DOI: 10.1080/01614940.2021.1942689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Päivi Mäki-Arvela
- Laboratory of Industrial Chemistry and Reaction Engineering, Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Turku, Finland
| | | | - Dmitry Yu. Murzin
- Laboratory of Industrial Chemistry and Reaction Engineering, Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Turku, Finland
| |
Collapse
|
7
|
Liu J, Song Y, Ma L. Earth-abundant Metal-catalyzed Reductive Amination: Recent Advances and Prospect for Future Catalysis. Chem Asian J 2021; 16:2371-2391. [PMID: 34235866 DOI: 10.1002/asia.202100473] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/27/2021] [Indexed: 12/29/2022]
Abstract
Nitrogen-containing compounds, as an important class of chemicals, have been used widely in pharmaceuticals, materials synthesis. Transition metal-catalyzed reductive amination of an aldehyde or a ketone with ammonia or an amine has been proved to be an efficient and practical method for the preparation of nitrogen-containing compounds in academia and industry for a century. Given the above, several effective methods using transition metals have been developed in recent years. Noble transition metals like Pd, Pt, and Au-based catalysts have been predominately used in reductive amination. Because of their high prices, strict official regulations of residues in pharmaceuticals, and deleterious effects on the biological system, their industrial applications are severely hampered. With the increasing sustainable and environmental problems, the Earth-abundant transition metals including Ti, Fe, Co, Ni, and Zr have also been investigated for the reductive amination reaction and showed great potential to the advancement of sustainable and cost-effective reductive amination processes. This critical review will mainly summarize the work using Earth-abundant metals. The effects of different transition metals used in catalytic reduction amination were discussed and compared, and some suggestions were given. The last section highlights the catalytic activities of bi- and tri-metallic catalysts. Indeed, this latter family is very promising and simultaneously benefits from increased stability, and selectivity, compared to monometallic NPs, due to synergistic substrate activation. Few comprehensive reviews focusing on Earth-abundant transition metals catalyst has been published since 1948, although several authors reported some summaries dealing with one or the other part of this aspect. It is hoped that this critical review will inspire researchers to develop new efficient and selective earth-abundant metal catalysts for highly, environmentally sustainable reductive amination methods, as well as improve the pharmaceutical industry and related chemical synthesis company traditional method with the utilization of the green method widely.
Collapse
Affiliation(s)
- Jianguo Liu
- Key Laboratory of Renewable Energy Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, P. R. China.,Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Yanpei Song
- Key Laboratory of Renewable Energy Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, P. R. China
| | - Longlong Ma
- Key Laboratory of Renewable Energy Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, P. R. China
| |
Collapse
|
8
|
Yılmaz Ö. Synthesis of New Secondary Amines and Their In Situ Catalytic Activity in Transfer Hydrogenation of Ketones and Antioxidant Properties. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1070428021040175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Romanazzi G, Petrelli V, Fiore AM, Mastrorilli P, Dell’Anna MM. Metal-based Heterogeneous Catalysts for One-Pot Synthesis of Secondary Anilines from Nitroarenes and Aldehydes. Molecules 2021; 26:1120. [PMID: 33672487 PMCID: PMC7923527 DOI: 10.3390/molecules26041120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/12/2021] [Accepted: 02/13/2021] [Indexed: 01/25/2023] Open
Abstract
Recently, N-substituted anilines have been the object of increasing research interest in the field of organic chemistry due to their role as key intermediates for the synthesis of important compounds such as polymers, dyes, drugs, agrochemicals and pharmaceutical products. Among the various methods reported in literature for the formation of C-N bonds to access secondary anilines, the one-pot reductive amination of aldehydes with nitroarenes is the most interesting procedure, because it allows to obtain diverse N-substituted aryl amines by simple reduction of nitro compounds followed by condensation with aldehydes and subsequent reduction of the imine intermediates. These kinds of tandem reactions are generally catalyzed by transition metal-based catalysts, mainly potentially reusable metal nanoparticles. The rapid growth in the last years in the field of metal-based heterogeneous catalysts for the one-pot reductive amination of aldehydes with nitroarenes demands for a review on the state of the art with a special emphasis on the different kinds of metals used as catalysts and their recyclability features.
Collapse
Affiliation(s)
- Giuseppe Romanazzi
- Dipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica (DICATECh), Politecnico di Bari, via Orabona 4, Bari 70125, Italy; (V.P.); (A.M.F.); (P.M.)
| | | | | | | | - Maria Michela Dell’Anna
- Dipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica (DICATECh), Politecnico di Bari, via Orabona 4, Bari 70125, Italy; (V.P.); (A.M.F.); (P.M.)
| |
Collapse
|
10
|
Kottappara R, Pillai SC, Kizhakkekilikoodayil Vijayan B. Copper-based nanocatalysts for nitroarene reduction-A review of recent advances. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.108181] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
11
|
Flow hydrogenation of 5-acetoxymethylfurfural over Cu-based catalysts. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.111132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Ghadermazi M, Moradi S, Mozafari R. Rice husk-SiO 2 supported bimetallic Fe-Ni nanoparticles: as a new, powerful magnetic nanocomposite for the aqueous reduction of nitro compounds to amines. RSC Adv 2020; 10:33389-33400. [PMID: 35515044 PMCID: PMC9056718 DOI: 10.1039/d0ra05381c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/31/2020] [Indexed: 12/04/2022] Open
Abstract
This paper reports a novel green procedure for immobilization of bimetallic Fe/Ni on amorphous silica nanoparticles extracted from rice husk (RH-SiO2). The heterogeneous nanocomposite (Fe/Ni@RH-SiO2) was identified using SEM, EDX, TEM, BET, H2-TPR, TGA, XRD, VSM, ICP-OES, and FT-IR analyses. The Fe/Ni@RH-SiO2 nanocomposite was applied as a powerful catalyst for the reduction of structurally diverse nitro compounds with sodium borohydride (NaBH4) in green conditions. This procedure suggests some benefits such as green chemistry-based properties, short reaction times, non-explosive materials, easy to handle, fast separation and simple work-up method. The catalyst was separated by an external magnet from the reaction mixture and was reused for 9 successive cycles with no detectable changes of its catalytic efficiency.
Collapse
Affiliation(s)
- Mohammad Ghadermazi
- Department of Chemistry, University of Kurdistan P.O. Box 66135-416 Sanandaj Iran +98 87 3324133 +98 87 33624133
| | - Setareh Moradi
- Department of Chemistry, University of Kurdistan P.O. Box 66135-416 Sanandaj Iran +98 87 3324133 +98 87 33624133
| | - Roya Mozafari
- Department of Chemistry, University of Kurdistan P.O. Box 66135-416 Sanandaj Iran +98 87 3324133 +98 87 33624133
| |
Collapse
|
13
|
Serrano‐Maldonado A, Reina A, Portales‐Martínez B, Guerrero‐Ríos I. Thioglycerol‐Stabilized Rhodium Nanoparticles in Biphasic Medium as Catalysts in Multistep Reactions. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Alejandro Serrano‐Maldonado
- Departamento de Química Inorgánica y Nuclear Universidad Nacional Autónoma de México Av. Universidad 3000 04510 Ciudad de México México
| | - Antonio Reina
- Departamento de Química Inorgánica y Nuclear Universidad Nacional Autónoma de México Av. Universidad 3000 04510 Ciudad de México México
| | - Benjamín Portales‐Martínez
- CONACYT, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada Laboratorio Nacional de Conversión y Almacenamiento de Energía Instituto Politécnico Nacional Calzada Legaría 694, Col. Irrigación 11500 Ciudad de México Mexico
| | - Itzel Guerrero‐Ríos
- Departamento de Química Inorgánica y Nuclear Universidad Nacional Autónoma de México Av. Universidad 3000 04510 Ciudad de México México
| |
Collapse
|
14
|
Moran MJ, Martina K, Baricco F, Tagliapietra S, Manzoli M, Cravotto G. Tuneable Copper Catalysed Transfer Hydrogenation of Nitrobenzenes to Aniline or Azo Derivatives. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000127] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Maria Jesus Moran
- Dipartimento di Scienza e Tecnologia del FarmacoUniversity of Turin Via Pietro Giuria 9 10125 Turin Italy
| | - Katia Martina
- Dipartimento di Scienza e Tecnologia del FarmacoUniversity of Turin Via Pietro Giuria 9 10125 Turin Italy
| | - Francesca Baricco
- Dipartimento di Scienza e Tecnologia del FarmacoUniversity of Turin Via Pietro Giuria 9 10125 Turin Italy
| | - Silvia Tagliapietra
- Dipartimento di Scienza e Tecnologia del FarmacoUniversity of Turin Via Pietro Giuria 9 10125 Turin Italy
| | - Maela Manzoli
- Dipartimento di Scienza e Tecnologia del FarmacoUniversity of Turin Via Pietro Giuria 9 10125 Turin Italy
| | - Giancarlo Cravotto
- Dipartimento di Scienza e Tecnologia del FarmacoUniversity of Turin Via Pietro Giuria 9 10125 Turin Italy
| |
Collapse
|
15
|
Sukhorukov AY. Catalytic Reductive Amination of Aldehydes and Ketones With Nitro Compounds: New Light on an Old Reaction. Front Chem 2020; 8:215. [PMID: 32351929 PMCID: PMC7174751 DOI: 10.3389/fchem.2020.00215] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/09/2020] [Indexed: 11/13/2022] Open
Abstract
Reductive amination of carbonyl compounds with primary amines is a well-established synthetic methodology for the selective production of unsymmetrically substituted secondary and tertiary amines. From the industrial and green chemistry perspective, it is attractive to combine reductive amination with the synthesis of primary amines in a single one-pot catalytic process. In this regard, nitro compounds, which are readily available and inexpensive feedstocks, received much attention as convenient precursors to primary amines in such processes. Although the direct reductive coupling of nitro compounds with aldehydes/ketones to give secondary and tertiary amines has been known since the 1940's, due to the development of highly efficient and selective non-noble metal-based catalysts a breakthrough in this area was made in the last decade. In this short overview, recent progress in the methodology of the reductive amination with nitro compounds is summarized together with applications to the synthesis of bioactive amines and heterocycles. Remaining challenges in this field are also analyzed.
Collapse
Affiliation(s)
- Alexey Yu Sukhorukov
- Laboratory of Organic and Metal-organic Nitrogen-Oxygen Systems, N. D. Zelinsky Institute of Organic Chemistry, Moscow, Russia.,Department of Innovational Materials and Technologies Chemistry, Plekhanov Russian University of Economics, Moscow, Russia
| |
Collapse
|
16
|
Ravi K, Advani JH, Bankar BD, Singh AS, Biradar AV. Sustainable route for the synthesis of flower-like Ni@N-doped carbon nanosheets from bagasse and its catalytic activity towards reductive amination of nitroarenes with bio-derived aldehydes. NEW J CHEM 2020. [DOI: 10.1039/d0nj04673f] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Waste derived N-doped carbon for one pot domino catalytic transformation starting from nitroarenes and carbonyl compounds directed towards the preparation of imines and benzimidazole products.
Collapse
Affiliation(s)
- Krishnan Ravi
- Inorganic Materials and Catalysis Division
- CSIR-Central Salt and Marine Chemicals Research Institute
- Bhavnagar-364 002
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Jacky H. Advani
- Inorganic Materials and Catalysis Division
- CSIR-Central Salt and Marine Chemicals Research Institute
- Bhavnagar-364 002
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Balasaheb D. Bankar
- Inorganic Materials and Catalysis Division
- CSIR-Central Salt and Marine Chemicals Research Institute
- Bhavnagar-364 002
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Amravati S. Singh
- Inorganic Materials and Catalysis Division
- CSIR-Central Salt and Marine Chemicals Research Institute
- Bhavnagar-364 002
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Ankush V. Biradar
- Inorganic Materials and Catalysis Division
- CSIR-Central Salt and Marine Chemicals Research Institute
- Bhavnagar-364 002
- India
- Academy of Scientific and Innovative Research (AcSIR)
| |
Collapse
|
17
|
Kita Y, Kai S, Supriadi Rustad LB, Kamata K, Hara M. One-pot reductive amination of carbonyl compounds with nitro compounds over a Ni/NiO composite. RSC Adv 2020; 10:32296-32300. [PMID: 35516507 PMCID: PMC9056697 DOI: 10.1039/d0ra06937j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 08/19/2020] [Indexed: 11/21/2022] Open
Abstract
Easy-to-prepare Ni/NiO acts as an efficient heterogeneous catalyst for one-pot reductive amination of carbonyl compounds with nitroarenes.
Collapse
Affiliation(s)
- Yusuke Kita
- Laboratory for Materials and Structures
- Institute of Innovative Research
- Tokyo Institute of Technology
- Yokohama 226-8503
- Japan
| | - Sayaka Kai
- Laboratory for Materials and Structures
- Institute of Innovative Research
- Tokyo Institute of Technology
- Yokohama 226-8503
- Japan
| | - Lesandre Binti Supriadi Rustad
- Laboratory for Materials and Structures
- Institute of Innovative Research
- Tokyo Institute of Technology
- Yokohama 226-8503
- Japan
| | - Keigo Kamata
- Laboratory for Materials and Structures
- Institute of Innovative Research
- Tokyo Institute of Technology
- Yokohama 226-8503
- Japan
| | - Michikazu Hara
- Laboratory for Materials and Structures
- Institute of Innovative Research
- Tokyo Institute of Technology
- Yokohama 226-8503
- Japan
| |
Collapse
|
18
|
Fiore AM, Romanazzi G, Dell’Anna MM, Latronico M, Leonelli C, Mali M, Rizzuti A, Mastrorilli P. Mild and efficient synthesis of secondary aromatic amines by one-pot stepwise reductive amination of arylaldehydes with nitroarenes promoted by reusable nickel nanoparticles. MOLECULAR CATALYSIS 2019. [DOI: 10.1016/j.mcat.2019.110507] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
19
|
Exposito AJ, Bai Y, Tchabanenko K, Rebrov EV, Cherkasov N. Process Intensification of Continuous-Flow Imine Hydrogenation in Catalyst-Coated Tube Reactors. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.8b06058] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Antonio J. Exposito
- Stoli Catalysts Ltd., Coventry CV3 4DS, United Kingdom
- School of Engineering, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Yang Bai
- Stoli Catalysts Ltd., Coventry CV3 4DS, United Kingdom
- School of Engineering, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Kirill Tchabanenko
- School of Chemistry and Chemical Engineering, Queen’s University, Belfast BT9 5AG, United Kingdom
| | - Evgeny V. Rebrov
- Stoli Catalysts Ltd., Coventry CV3 4DS, United Kingdom
- School of Engineering, University of Warwick, Coventry CV4 7AL, United Kingdom
- Department of Biotechnology and Chemistry, Tver State Technical University, Naberezhnaya Afanasiya Nikitina 22, Tver 170026, Russia
| | - Nikolay Cherkasov
- Stoli Catalysts Ltd., Coventry CV3 4DS, United Kingdom
- School of Engineering, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
20
|
Luise N, Wyatt EW, Tarver GJ, Wyatt PG. A Continuous Flow Strategy for the Facile Synthesis and Elaboration of Semi-Saturated Heterobicyclic Fragments. European J Org Chem 2019. [DOI: 10.1002/ejoc.201801684] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Nicola Luise
- Drug Discovery Unit; School of Life Sciences; University of Dundee; Dow Street 5EH Dundee, DD1 Scotland, UK
| | - Eleanor W. Wyatt
- Drug Discovery Unit; School of Life Sciences; University of Dundee; Dow Street 5EH Dundee, DD1 Scotland, UK
| | - Gary J. Tarver
- Drug Discovery Unit; School of Life Sciences; University of Dundee; Dow Street 5EH Dundee, DD1 Scotland, UK
| | - Paul G. Wyatt
- Drug Discovery Unit; School of Life Sciences; University of Dundee; Dow Street 5EH Dundee, DD1 Scotland, UK
| |
Collapse
|
21
|
Li J, Wang B, Qin Y, Tao Q, Chen L. MOF-derived Ni@NC catalyst: synthesis, characterization, and application in one-pot hydrogenation and reductive amination. Catal Sci Technol 2019. [DOI: 10.1039/c9cy00734b] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
MOF-derived Ni@NC is prepared and used as highly selective catalyst for one-pot hydrogenation and reductive amination.
Collapse
Affiliation(s)
- Jiayi Li
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- P. R. China
| | - Bowei Wang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
| | - Yutian Qin
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- P. R. China
| | - Qin Tao
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- P. R. China
| | - Ligong Chen
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
| |
Collapse
|
22
|
Formenti D, Ferretti F, Scharnagl FK, Beller M. Reduction of Nitro Compounds Using 3d-Non-Noble Metal Catalysts. Chem Rev 2018; 119:2611-2680. [PMID: 30516963 DOI: 10.1021/acs.chemrev.8b00547] [Citation(s) in RCA: 398] [Impact Index Per Article: 56.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The reduction of nitro compounds to the corresponding amines is one of the most utilized catalytic processes in the fine and bulk chemical industry. The latest development of catalysts with cheap metals like Fe, Co, Ni, and Cu has led to their tremendous achievements over the last years prompting their greater application as "standard" catalysts. In this review, we will comprehensively discuss the use of homogeneous and heterogeneous catalysts based on non-noble 3d-metals for the reduction of nitro compounds using various reductants. The different systems will be revised considering both the catalytic performances and synthetic aspects highlighting also their advantages and disadvantages.
Collapse
Affiliation(s)
- Dario Formenti
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock , Albert-Einstein-Straße 29a , 18059 Rostock , Germany
| | - Francesco Ferretti
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock , Albert-Einstein-Straße 29a , 18059 Rostock , Germany
| | - Florian Korbinian Scharnagl
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock , Albert-Einstein-Straße 29a , 18059 Rostock , Germany
| | - Matthias Beller
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock , Albert-Einstein-Straße 29a , 18059 Rostock , Germany
| |
Collapse
|
23
|
Cao P, Ma T, Zhang HY, Yin G, Zhao J, Zhang Y. Conversion of levulinic acid to N-substituted pyrrolidinones over a nonnoble bimetallic catalyst Cu15Pr3/Al2O3. CATAL COMMUN 2018. [DOI: 10.1016/j.catcom.2018.07.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
24
|
Artyukha EA, Nuzhdin AL, Bukhtiyarova GA, Derevyannikova EA, Gerasimov EY, Gladkii AY, Bukhtiyarov VI. One-Pot Synthesis of Secondary Amines from Nitroarenes and Aldehydes on Supported Copper Catalysts in a Flow Reactor: The Effect of the Support. KINETICS AND CATALYSIS 2018. [DOI: 10.1134/s0023158418050014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|