1
|
A comparative study of the catalytic activity of Mn-porphyrins anchored onto magnetic nanoparticles: a clue to the effect of linker length. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2023. [DOI: 10.1007/s13738-023-02754-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
2
|
Nejabat F, Rayati S. Comparison of the Two Carbon Allotropes as Solid Support: Catalytic Efficiency of the Supported Metalloporphyrins for the Aerobic Oxidation of Alcohols. ChemistrySelect 2022. [DOI: 10.1002/slct.202104069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Fatemeh Nejabat
- Department of Chemistry K.N. Toosi University of Technology P.O. Box 16315–1618 Tehran 15418 Iran
| | - Saeed Rayati
- Department of Chemistry K.N. Toosi University of Technology P.O. Box 16315–1618 Tehran 15418 Iran
| |
Collapse
|
3
|
Samani M, Ardakani MH, Sabet M. Efficient and selective oxidation of hydrocarbons with tert-butyl hydroperoxide catalyzed by oxidovanadium(IV) unsymmetrical Schiff base complex supported on γ-Fe2O3 magnetic nanoparticles. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04656-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
4
|
Rayati S, Zamanifard A, Nejabat F, Hoseini S. Photocatalytic potential of an immobilized free-base porphyrin for the oxidation of organic substrates. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
5
|
Taghavi F, Khojastehnezhad A, Khalifeh R, Rajabzadeh M, Rezaei F, Abnous K, Taghdisi SM. Design and synthesis of a new magnetic metal organic framework as a versatile platform for immobilization of acidic catalysts and CO 2 fixation reaction. NEW J CHEM 2021. [DOI: 10.1039/d1nj02140k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The first report of the use of an acidic magnetic metal organic framework for the chemical fixation of CO2 as an environmentally friendly reaction.
Collapse
Affiliation(s)
- Faezeh Taghavi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Khojastehnezhad
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Khalifeh
- Department of Chemistry, Shiraz University of Technology, Shiraz, 71555-313, Iran
| | - Maryam Rajabzadeh
- Department of Chemistry, Shiraz University of Technology, Shiraz, 71555-313, Iran
| | - Fahimeh Rezaei
- Department of Chemistry, Shiraz University of Technology, Shiraz, 71555-313, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Masteri-Farahani M, Rahimi M, Hosseini MS. Heterogenization of porphyrin complexes within the nanocages of SBA-16: New efficient and stable catalysts for the epoxidation of olefins. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
7
|
Rayati S, Moradi D, Nejabat F. Magnetically recoverable porphyrin-based nanocatalysts for the effective oxidation of olefins with hydrogen peroxide: a comparative study. NEW J CHEM 2020. [DOI: 10.1039/d0nj04190d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A simple method for the functionalization of magnetic nanoparticles, which is achieved by the attachment of metalloporphyrin onto the surface of amine functionalized silica-coated magnetic nanoparticles via an amide bond.
Collapse
Affiliation(s)
- Saeed Rayati
- Department of Chemistry
- K.N. Toosi University of Technology
- Tehran 15418
- Iran
| | - Dana Moradi
- Department of Chemistry
- K.N. Toosi University of Technology
- Tehran 15418
- Iran
| | - Fatemeh Nejabat
- Department of Chemistry
- K.N. Toosi University of Technology
- Tehran 15418
- Iran
| |
Collapse
|
8
|
Rayati S, Khodaei E, Nafarieh P, Jafarian M, Elmi B, Wojtczak A. A manganese(iii) Schiff base complex immobilized on silica-coated magnetic nanoparticles showing enhanced electrochemical catalytic performance toward sulfide and alkene oxidation. RSC Adv 2020; 10:17026-17036. [PMID: 35496932 PMCID: PMC9053262 DOI: 10.1039/d0ra02728f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 04/16/2020] [Indexed: 11/21/2022] Open
Abstract
A Mn–Schiff base complex supported on silica-coated iron magnetic nanoparticles was used for the electrochemical oxidation of sulfides and alkenes.
Collapse
Affiliation(s)
- Saeed Rayati
- Department of Chemistry
- K. N. Toosi University of Technology
- Tehran 15418
- Iran
| | - Elham Khodaei
- Department of Chemistry
- K. N. Toosi University of Technology
- Tehran 15418
- Iran
| | - Parinaz Nafarieh
- Department of Chemistry
- K. N. Toosi University of Technology
- Tehran 15418
- Iran
| | - Majid Jafarian
- Department of Chemistry
- K. N. Toosi University of Technology
- Tehran 15418
- Iran
| | - Bahareh Elmi
- Department of Chemistry
- K. N. Toosi University of Technology
- Tehran 15418
- Iran
| | | |
Collapse
|
9
|
Rajendran A, Rajendiran M, Yang ZF, Fan HX, Cui TY, Zhang YG, Li WY. Functionalized Silicas for Metal-Free and Metal-Based Catalytic Applications: A Review in Perspective of Green Chemistry. CHEM REC 2019; 20:513-540. [PMID: 31631504 DOI: 10.1002/tcr.201900056] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/23/2019] [Indexed: 12/20/2022]
Abstract
Heterogeneous catalysis plays a key role in promoting green chemistry through many routes. The functionalizable reactive silanols highlight silica as a beguiling support for the preparation of heterogeneous catalysts. Metal active sites anchored on functionalized silica (FS) usually demonstrate the better dispersion and stability due to their firm chemical interaction with FSs. Having certain functional groups in structure, FSs can act as the useful catalysts for few organic reactions even without the need of metal active sites which are termed as the covetous reusable organocatalysts. Magnetic FSs have laid the platform where the effortless recovery of catalysts is realized just using an external magnet, resulting in the simplified reaction procedure. Using FSs of multiple functional groups, we can envisage the shortened reaction pathway and, reduced chemical uses and chemical wastes. Unstable bio-molecules like enzymes have been stabilized when they get chemically anchored on FSs. The resultant solid bio-catalysts exhibited very good reusability in many catalytic reactions. Getting provoked from the green chemistry aspects and benefits of FS-based catalysts, we confer the recent literature and progress focusing on the significance of FSs in heterogeneous catalysis. This review covers the preparative methods, types and catalytic applications of FSs. A special emphasis is given to the metal-free FS catalysts, multiple FS-based catalysts and magnetic FSs. Through this review, we presume that the contribution of FSs to green chemistry can be well understood. The future perspective of FSs and the improvements still required for implementing FS-based catalysts in practical applications have been narrated at the end of this review.
Collapse
Affiliation(s)
- Antony Rajendran
- Training Base of State Key Laboratory of Coal Science and Technology Jointly Constructed by Shanxi Province and Ministry of Science and Technology, Taiyuan University of Technology, Taiyuan, 030024, P.R. China
| | - Marimuthu Rajendiran
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, Maharashtra, India
| | - Zhi-Fen Yang
- Training Base of State Key Laboratory of Coal Science and Technology Jointly Constructed by Shanxi Province and Ministry of Science and Technology, Taiyuan University of Technology, Taiyuan, 030024, P.R. China
| | - Hong-Xia Fan
- Training Base of State Key Laboratory of Coal Science and Technology Jointly Constructed by Shanxi Province and Ministry of Science and Technology, Taiyuan University of Technology, Taiyuan, 030024, P.R. China
| | - Tian-You Cui
- Training Base of State Key Laboratory of Coal Science and Technology Jointly Constructed by Shanxi Province and Ministry of Science and Technology, Taiyuan University of Technology, Taiyuan, 030024, P.R. China
| | - Ya-Gang Zhang
- Department of Chemistry and Chemical Engineering, Xi'an University of Technology, Xi'an, 710054, PR China
| | - Wen-Ying Li
- Training Base of State Key Laboratory of Coal Science and Technology Jointly Constructed by Shanxi Province and Ministry of Science and Technology, Taiyuan University of Technology, Taiyuan, 030024, P.R. China.,Department of Chemistry and Chemical Engineering, Xi'an University of Technology, Xi'an, 710054, PR China
| |
Collapse
|