1
|
Qi H, Xu S, Zhao R, Chen S. Synthesis of Ynones via N-Iodosuccinimide-Mediated Oxidation of Propargyl Alcohols under Mild Conditions. J Org Chem 2022; 87:13726-13733. [PMID: 36190413 DOI: 10.1021/acs.joc.2c01386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A convenient and mild approach for the construction of ynones via N-iodosuccinimide (NIS)-mediated oxidation of propargyl alcohols has been described. This reaction could furnish the ynone products with a diversity of functional groups in moderate to excellent yields, and the flexibility of this method was demonstrated by the gram-scale experiment and further transformation.
Collapse
Affiliation(s)
- Hongbo Qi
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Shuai Xu
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Ruiguo Zhao
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Shufeng Chen
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|
2
|
Xiao Z, Guo S, Lu W. Asymmetric reduction of 4-trimethylsilyl-3-butyn-2-one to (R)-4-trimethylsilyl-3-butyn-2-ol catalyzed by a novel strain lyophilized Acetobacter sp. CCTCC M209061 in an aqueous/ionic liquid biphasic system. REACTION KINETICS MECHANISMS AND CATALYSIS 2022. [DOI: 10.1007/s11144-022-02223-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
3
|
Rohland P, Schreyer K, Burges R, Fritz N, Hager MD, Schubert US. Liquid Chromatography Analysis of Reactive Oxoammonium Cations. Chromatographia 2021. [DOI: 10.1007/s10337-021-04084-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AbstractThis study presents the first liquid chromatography method for the quantitative and qualitative analysis of highly reactive oxoammonium cations based on a simple derivatization reaction. Rapid 1,2-electrophilic addition reactions with olefins were used to transform these reactive species into analyzable derivates. Three model substances were chosen to represent each of the main application fields of oxoammonium cations and to demonstrate the versatility of the method. The measuring protocol was validated according to the ICH and USP guidelines. The method revealed an excellent linearity (R2 = 0.9980–0.9990) with a low limit of detection (0.16–0.14 mmol L−1) and a low limit of quantification (0.55–0.43 mmol L−1). The protocol was finally used to determine the oxoammonium cations in the presence of their corresponding radical, showing a robustness against impurity concentration of up to approx. 30%.
Collapse
|
4
|
One-pot two-step chemoenzymatic deracemization of allylic alcohols using laccases and alcohol dehydrogenases. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.111087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
Patel SB, Vasava DV. The Study on Encapsulation of Copper Nanoparticles in Modified Poly‐Styrene Resin Metrix and its Catalytic Evaluation in Microwave‐Assisted Sonogashira Coupling. ChemistrySelect 2020. [DOI: 10.1002/slct.202001106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Sunil B. Patel
- Chemistry School of Sciences, department of chemistryGujarat University, Navrangpura Ahmedabad 380009 India
| | - Dilip V. Vasava
- Chemistry School of Sciences, department of chemistryGujarat University, Navrangpura Ahmedabad 380009 India
| |
Collapse
|
6
|
Oswal P, Arora A, Singh S, Nautiyal D, Kumar S, Rao GK, Kumar A. Organochalcogen ligands in catalysis of oxidation of alcohols and transfer hydrogenation. Dalton Trans 2020; 49:12503-12529. [PMID: 32804180 DOI: 10.1039/d0dt01201g] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Organochalcogen compounds have been used as the building blocks for the development of a variety of catalysts that have been studied comprehensively during the last two decades for several chemical transformations. Transfer hydrogenation (reduction of carbonyl compounds to alcohols) and oxidation of alcohols (conversion of alcohols to their respective ketones and aldehydes) are also among such chemical transformations. Some compilations are available in the literature on the development of catalysts, based on organochalcogen ligands, and their applications in Heck reaction, Suzuki reaction, and other related aspects. Some review articles have also been published on different aspects of oxidation of alcohols and transfer hydrogenation. However, no such article is available in the literature on the syntheses and use of organochalcogen ligated catalysts for these two reactions. In this perspective, a survey of developments pertaining to the synthetic aspects of such organochalcogen (S/Se/Te) based catalysts for the two reactions has been made. In addition to covering the syntheses of chalcogen ligands, their metal complexes and nanoparticles (NPs), emphasis has also been placed on the efficient conversion of different substrates during catalytic reactions, diversity in catalytic potential and mechanistic aspects of catalysis. It also includes the analysis of comparison (in terms of efficiency) between this unique class of catalysts and efficient catalysts without a chalcogen donor. The future scope of this area has also been highlighted.
Collapse
Affiliation(s)
- Preeti Oswal
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248012, India.
| | - Aayushi Arora
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248012, India.
| | - Siddhant Singh
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248012, India.
| | - Divyanshu Nautiyal
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248012, India.
| | - Sushil Kumar
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248012, India.
| | - Gyandshwar Kumar Rao
- Department of Chemistry Biochemistry and Forensic Science, Amity School of Applied Sciences, Amity University Haryana, Gurgaon, Haryana 122413, India
| | - Arun Kumar
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248012, India.
| |
Collapse
|