1
|
Zhang Y, Qiao W, Gao Z, Guo D. Liquefaction pathway of corn stalk cellulose in the presence of polyhydric alcohols under acid catalysis. Int J Biol Macromol 2024:133553. [PMID: 39030155 DOI: 10.1016/j.ijbiomac.2024.133553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/19/2024] [Accepted: 06/27/2024] [Indexed: 07/21/2024]
Abstract
In this paper, the experiment of cellulose from corn stalk using 1, 2-propylene glycol (PG) and diethylene glycol (DEG) liquefaction catalyzed by phosphoric acid at atmosphere pressure was carried out. The effect of reaction time on the structural changes of cellulose in the liquefaction process of polyhydric alcohols was investigated, aiming at understanding the mechanism of cellulose liquefaction reaction under the action of acid catalyzed polyhydric alcohols. It was found that the liquefaction yield increased first and then decreased with the extension of reaction time, and reached the highest at 150 min (99.34 %). In the phase of increasing liquefaction yield, cellulose was degraded and translated into glucose, which was then converted into plenty of glycosides with PG/DEG. These glycosides were further converted into low molecular weight (LMW) substances such as hydrocarbons, acids, alcohols, esters, ketones, and ethers. At this time, the biofuel contained 70 %-85 % compounds with carbon number less than 25 and 5 %-10 % compounds with carbon number more than 25. As the prolongation of reaction time (after 150 min), quantities of unstable free radicals formed by cellulose degradation could combine with each other or with hydrogen atoms provided by PG/DEG to produce relatively stable macromolecular substances. That is, the polydispersity (Mw/Mn, abbreviated Ð = 1.28) of the generated biofuel at this stage no longer decreased. However, liquefaction residue produced at 240 min had changed essentially, which was completely different from the liquefaction residue produced in the early stage of liquefaction. In conclusion, this paper revealed the partial reaction process of cellulose by studying the structural changes in the liquefaction process of polyhydric alcohols, which laid a theoretical foundation for exploring the liquefaction mechanism of cellulose.
Collapse
Affiliation(s)
- Yan Zhang
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China.
| | - Wenpu Qiao
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Zhuangzhi Gao
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Daliang Guo
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| |
Collapse
|
2
|
Ravi Kiran B, Singh P, Kuravi SD, Mohanty K, Venkata Mohan S. Modulating cultivation regimes of Messastrum gracile SVMIICT7 for biomass productivity integrated with resource recovery via hydrothermal liquefaction. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120458. [PMID: 38479286 DOI: 10.1016/j.jenvman.2024.120458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/09/2023] [Accepted: 02/20/2024] [Indexed: 04/07/2024]
Abstract
The present study was designed to assess Messastrum gracile SVMIICT7 potential in treating dairy wastewater (autoclaved (ADWW) and raw (DWW)) with relation to nutrient removal, in-vivo Chl-a-based biomass, and bio-oil synthesis. Chlorophyll a fluorescence kinetics revealed improved photochemical efficiency (0.639, Fv/Fm) in M. gracile when grown with DWW. This may be owing to enhanced electron transport being mediated by an effective water-splitting complex at photosystem (PSII) of thylakoids. The increase in ABS/RC observed in DWW can be attributed to the elevated chlorophyll content and reduced light dissipation, as evident by higher values of ETo/RC and a decrease in non-photochemical quenching (NPQ). M. gracile inoculated in DWW had the highest Chl-a-biomass yield (1.8 g L-1) and biomolecules while maximum nutrient removal efficiency was observed in ADWW (83.7% TN and 60.07% TP). M. gracile exhibited substantial bio-oil yield of 29.6% and high calorific value of 37.19 MJ kg-1, predominantly composed of hydrocarbons along with nitrogen and oxygen cyclic compounds. This research offers a thorough investigation into wastewater treatment, illustrating the conversion of algal biomass into valuable energy sources and chemical intermediates within the framework of a biorefinery.
Collapse
Affiliation(s)
- Boda Ravi Kiran
- Bioengineering and Environmental Science Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, 500 007, India
| | - Pooja Singh
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Sri Divya Kuravi
- Bioengineering and Environmental Science Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, 500 007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Kaustubha Mohanty
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - S Venkata Mohan
- Bioengineering and Environmental Science Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, 500 007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
3
|
Bassoli SC, da Fonseca YA, Wandurraga HJL, Baeta BEL, de Souza Amaral M. Research progress, trends, and future prospects on hydrothermal liquefaction of algae for biocrude production: a bibliometric analysis. BIOMASS CONVERSION AND BIOREFINERY 2023:1-16. [PMID: 36788981 PMCID: PMC9911945 DOI: 10.1007/s13399-023-03905-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 01/17/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
The rising demand to settle a sustainable energy source is guiding researchers in the production of biofuels. The liquefaction process is an alternative to obtaining biocrude from different types of renewable biomass and can mitigate environmental impacts. All papers published since 2000, which are related to the hydrothermal liquefaction process that aims to obtain biocrude are analyzed in the present study using the bibliometric approach to provide the selected database. Furthermore, the use of algae biomass in the liquefaction was also a discussed topic considering its high relevance in the process. The focus of the present study was to evaluate the evolution of the current state of the art in these topics and also to indicate trends and courses that it might be taken in the future. The database used in the bibliometric analysis was taken from the Web of Science (WoS) and the papers were selected by two different search equations. With the selected data, the use of BibExcel, VOSviewer, and PowerBi software was useful to guide the discussion and to create graphics and visual networks. As shown in the results, it was noticeable the influence of China and the USA on the field, considering the high number of publications from these countries. Moreover, the main authors were indicated considering their citation numbers, publications, and local h-index factor. Based on the author's keywords, the most significant and recent topics on liquefaction were listed. Among them, technical-economic analysis, nutrient, and energy recovery, response surface methodology, and kinetic model are highlighted. This may indicate a new direction being taken by researchers besides the operational parameters' studies. Graphical Abstract
Collapse
Affiliation(s)
- Sara Cangussú Bassoli
- Environmental and Chemical Technology Group, Department of Chemistry, Federal University of Ouro Preto, Campus Universitário Morro do Cruzeiro, Bauxita s/n, Ouro Preto, 35400-000 Brazil
| | - Yasmim Arantes da Fonseca
- Environmental and Chemical Technology Group, Department of Chemistry, Federal University of Ouro Preto, Campus Universitário Morro do Cruzeiro, Bauxita s/n, Ouro Preto, 35400-000 Brazil
| | - Hector Javier Luna Wandurraga
- Environmental and Chemical Technology Group, Department of Chemistry, Federal University of Ouro Preto, Campus Universitário Morro do Cruzeiro, Bauxita s/n, Ouro Preto, 35400-000 Brazil
| | - Bruno Eduardo Lobo Baeta
- Environmental and Chemical Technology Group, Department of Chemistry, Federal University of Ouro Preto, Campus Universitário Morro do Cruzeiro, Bauxita s/n, Ouro Preto, 35400-000 Brazil
| | - Mateus de Souza Amaral
- Environmental and Chemical Technology Group, Department of Chemistry, Federal University of Ouro Preto, Campus Universitário Morro do Cruzeiro, Bauxita s/n, Ouro Preto, 35400-000 Brazil
| |
Collapse
|
4
|
Wei Y, Fakudze S, Yang S, Zhang Y, Xue T, Han J, Chen J. Synergistic citric acid-surfactant catalyzed hydrothermal liquefaction of pomelo peel for production of hydrocarbon-rich bio-oil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159235. [PMID: 36208756 DOI: 10.1016/j.scitotenv.2022.159235] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/10/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Citric acid showed good performance of hydrothermal liquefaction (HTL) of biomass waste via promoting the depolymerization of macromolecules. The synergistic effects of citric acid-surfactants/solid catalysts in the low-temperature (200 °C) catalytic hydrothermal liquefaction of pomelo peel (PP) were studied for the first time. It turned out that citric acid-surfactants promoted the conversion of pomelo peel to bio-oil with a higher yield (26.10-67.72 wt%), higher heating value (17.79-24.77 MJ/kg) and energy yield (33.53-114.11 %), while citric acid-solid catalysts were more conducive to the formation of gas and other products. FT-IR and GC-MS analysis testified that citric acid-surfactants increased the selectivity of hydrocarbons from 49.99 % to 74.19 %. Additionally, the chemical functional groups of bio-oil were characterized by 1H NMR and 13C NMR, indicating that the highest aliphatic content of bio-oils was 89.67 %. Moreover, citric acid-surfactant more environmentally friendly for low temperature liquefaction of biomass.
Collapse
Affiliation(s)
- Yingyuan Wei
- Laboratory of Advanced Environmental & Energy Materials, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, PR China
| | - Sandile Fakudze
- Laboratory of Advanced Environmental & Energy Materials, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, PR China; Department of Environmental Science, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, PR China
| | - Shilong Yang
- Advanced Analysis and Testing Center, Nanjing Forestry University, Nanjing 210037, PR China
| | - Yu Zhang
- Laboratory of Advanced Environmental & Energy Materials, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, PR China
| | - Tianjiao Xue
- Laboratory of Advanced Environmental & Energy Materials, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, PR China
| | - Jiangang Han
- Department of Environmental Science, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, PR China.
| | - Jianqiang Chen
- Laboratory of Advanced Environmental & Energy Materials, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, PR China.
| |
Collapse
|
5
|
Ighalo JO, Rangabhashiyam S, Dulta K, Umeh CT, Iwuozor KO, Aniagor CO, Eshiemogie SO, Iwuchukwu FU, Igwegbe CA. Recent advances in hydrochar application for the adsorptive removal of wastewater pollutants. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.06.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Prestigiacomo C, Scialdone O, Galia A. Hydrothermal liquefaction of wet biomass in batch reactors: critical assessment of the role of operating parameters as a function of the nature of the feedstock. J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2022.105689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
7
|
Kang K, Nanda S, Hu Y. Current trends in biochar application for catalytic conversion of biomass to biofuels. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.06.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
8
|
Wei Y, Fakudze S, Zhang Y, Song M, Xue T, Xie R, Chen J. Low-temperature hydrothermal liquefaction of pomelo peel for production of 5-hydroxymethylfurfural-rich bio-oil using ionic liquid loaded ZSM-5. BIORESOURCE TECHNOLOGY 2022; 352:127050. [PMID: 35351566 DOI: 10.1016/j.biortech.2022.127050] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Ionic liquid loaded ZSM-5 with high stability and catalytic performance was used for hydrothermal liquefaction (HTL) of pomelo peel for the first time. Bio-oil obtained at 200 °C had the highest yield (29.21 wt%) and high heating value (21.41 MJ/kg), with main constituents of 5-hydroxymethylfurfural (5-HMF, 50.10%), 3-Pyridinol (19.8%) and pentanoic acid (5.35%). The higher 5-hydroxymethylfurfural yield obtained using ionic liquid loaded ZSM-5 was further compared to other studies (0-50%). In comparison to high-temperature HTL, catalytic HTL with ionic liquid loaded ZSM-5 led to lower activation energy requirements (31.93 kJ·mol-1) for the conversion of glucose into 5-HMF. Additionally, the catalysts showed excellent recyclability, with 19.68 wt% of bio-oil containing 59.6% of light oil obtained after 5 cycles. Hence, this study presents a novel approach for the catalytic conversion of lignocellulosic biomass into 5-HMF-rich bio-oil for energy and green chemistry applications.
Collapse
Affiliation(s)
- Yingyuan Wei
- Laboratory of Advanced Environmental & Energy Materials, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, PR China
| | - Sandile Fakudze
- Laboratory of Advanced Environmental & Energy Materials, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, PR China
| | - Yu Zhang
- Laboratory of Advanced Environmental & Energy Materials, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, PR China
| | - Min Song
- Ministry of Education of Key Laboratory of Energy Thermal Conversion and Control, School of Energy and Environment, Southeast University, Nanjing 210096, PR China
| | - Tianjiao Xue
- Laboratory of Advanced Environmental & Energy Materials, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, PR China
| | - Ruiyan Xie
- Laboratory of Advanced Environmental & Energy Materials, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, PR China
| | - Jianqiang Chen
- Laboratory of Advanced Environmental & Energy Materials, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, PR China.
| |
Collapse
|
9
|
Biocrude Oil Production by Integrating Microalgae Polyculture and Wastewater Treatment: Novel Proposal on the Use of Deep Water-Depth Polyculture of Mixotrophic Microalgae. ENERGIES 2021. [DOI: 10.3390/en14216992] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Microalgae have attracted significant attention worldwide as one of the most promising feedstock fossil fuel alternatives. However, there are a few challenges for algal fuels to compete with fossil fuels that need to be addressed. Therefore, this study reviews the R&D status of microalgae-based polyculture and biocrude oil production, along with wastewater treatment. Mixotrophic algae are free to some extent from light restrictions using organic matter and have the ability to grow well even in deep water-depth cultivation. It is proposed that integrating the mixotrophic microalgae polyculture and wastewater treatment process is the most promising and harmonizing means to simultaneously increase capacities of microalgae biomass production and wastewater treatment with a low land footprint and high robustness to perturbations. A large amount of mixotrophic algae biomass is harvested, concentrated, and dewatered by combining highly efficient sedimentation through flocculation and energy efficient filtration, which reduce the carbon footprint for algae fuel production and coincide with the subsequent hydrothermal liquefaction (HTL) conversion. HTL products are obtained with a relatively low carbon footprint and separated into biocrude oil, solid, aqueous, and gas fractions. Algae biomass feedstock-based HTL conversion has a high biocrude oil yield and quality available for existing oil refineries; it also has a bioavailability of the recycled nitrogen and phosphorus from the aqueous phase of algae community HTL. The HTL biocrude oil represents higher sustainability than conventional liquid fuels and other biofuels for the combination of greenhouse gas (GHG) and energy return on investment (EROI). Deep water-depth polyculture of mixotrophic microalgae using sewage has a high potential to produce sustainable biocrude oil within the land area of existing sewage treatment plants in Japan to fulfill imported crude oil.
Collapse
|
10
|
Pyrolysis of High-Ash Natural Microalgae from Water Blooms: Effects of Acid Pretreatment. Toxins (Basel) 2021; 13:toxins13080542. [PMID: 34437413 PMCID: PMC8402610 DOI: 10.3390/toxins13080542] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 02/07/2023] Open
Abstract
Natural microalgae (NA, cyanobacteria) collected from Taihu Lake (Jiangsu, China) were used for biofuel production through pyrolysis. The microalgae were de-ashed via pretreatment with deionized water and hydrochloric acid, and the samples obtained were noted as 0 M, 0.1 M, 1 M, 2 M, 4 M, 6 M, 8 M, respectively, according to the concentration of hydrochloric acid used in the pretreatment. Pyrolysis experiments were carried out at 500 °C for 2 h. The products were examined by various techniques to identify the influence of the ash on the pyrolysis behavior. The results showed that the ash inhibited the thermal transformation of microalgae. The 2 mol/L hydrochloric acid performed the best in removing ash and the liquid yield increased from 34.4% (NA) to 40.5% (2 M). Metal-oxides (mainly CaO, MgO, Al2O3) in ash promoted the reaction of hexadecanoic acid and NH3 to produce more hexadecanamide, which was further dehydrated to hexadecanenitrile. After acid pretreatment, significant improvement in the selectivity of hexadecanoic acid was observed, ranging from 22.4% (NA) to 58.8% (4 M). The hydrocarbon compounds in the liquid product increased from 12.90% (NA) to 26.67% (2 M). Furthermore, the acid pretreatment enhanced the content of C9–C16 compounds and the HHV values of bio-oil. For natural microalgae, the de-ashing pretreatment before pyrolysis was essential for improving the biocrude yield and quality, as well as the biomass conversion efficiency.
Collapse
|