1
|
Subha N, Nagappagari LR, Ravi Sankar A. A review on recent advances in g-C 3N 4-MXene nanocomposites for photocatalytic applications. NANOTECHNOLOGY 2024; 35:502002. [PMID: 39312902 DOI: 10.1088/1361-6528/ad7e2f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/23/2024] [Indexed: 09/25/2024]
Abstract
The solutions for environmental remediation and renewable energy generation have intensified the exploration of efficient photocatalytic materials. Recently, the composites of g-C3N4and MXene have gained considerable interest for their potential applications in photocatalysis. In the g-C3N4-MXene composite, the g-C3N4possesses unique physical, chemical, and optical properties to increase visible light absorption. At the same time, MXene improves conductivity, adsorption of reactant molecules or the active sites, and charge transfer properties. Combining the unique physico-chemical properties of MXene and g-C3N4, the resulting composite exhibits superior photo-responsive behavior and is critical in photocatalytic reactions. Furthermore, the g-C3N4-MXene composite exhibits stability and recyclability, making it a promising candidate for sustainable and scalable photocatalytic material in environmental remediation. This review offers an in-depth analysis of the development and design of g-C3N4-MXene composites through diverse synthesis procedures and a comprehensive analysis of their application in carbon dioxide (CO2) reduction, photocatalytic degradation, water splitting processes, mainly hydrogen (H2) generation, H2O2production, N2fixation, and NOxremoval. The charge transfer mechanism of g-C3N4-MXene composite for photocatalytic application has also been discussed. This review provides insights into the photocatalytic capabilities of g-C3N4-MXene composites, showing their potential to address current environmental challenges and establish a robust foundation for sustainable energy conversion technologies.
Collapse
Affiliation(s)
- N Subha
- Centre for Advanced Materials and Innovative Technologies (CAMIT), Vellore Institute of Technology (VIT), Chennai Campus, Chennai, Tamil Nadu, 600127, India
- Department of Chemistry, Vellore Institute of Technology (VIT), Chennai Campus, Chennai 600127, Tamil Nadu, India
| | | | - A Ravi Sankar
- School of Electronics Engineering (SENSE), Vellore Institute of Technology (VIT), Chennai Campus, Chennai 600127, Tamil Nadu, India
| |
Collapse
|
2
|
Socol M, Preda N, Breazu C, Costas A, Rasoga O, Petre G, Popescu-Pelin G, Iftimie S, Stochioiu A, Socol G, Stanculescu A. Macrocyclic Compounds: Metal Oxide Particles Nanocomposite Thin Films Deposited by MAPLE. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2480. [PMID: 36984360 PMCID: PMC10056935 DOI: 10.3390/ma16062480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/17/2023] [Accepted: 03/18/2023] [Indexed: 06/18/2023]
Abstract
Nanocomposite films based on macrocyclic compounds (zinc phthalocyanine (ZnPc) and 5,10,15,20-tetra(4-pyridyl) 21H,23H-porphyrin (TPyP)) and metal oxide nanoparticles (ZnO or CuO) were deposited by matrix-assisted pulsed laser evaporation (MAPLE). 1,4-dioxane was used as a solvent in the preparation of MAPLE targets that favor the deposition of films with a low roughness, which is a key feature for their integration in structures for optoelectronic applications. The influence of the addition of ZnO nanoparticles (~20 nm in size) or CuO nanoparticles (~5 nm in size) in the ZnPc:TPyP mixture and the impact of the added metal oxide amount on the properties of the obtained composite films were evaluated in comparison to a reference layer based only on an organic blend. Thus, in the case of nanocomposite films, the vibrational fingerprints of both organic compounds were identified in the infrared spectra, their specific strong absorption bands were observed in the UV-Vis spectra, and a quenching of the TPyP emission band was visible in the photoluminescence spectra. The morphological analysis evidenced agglomerated particles on the composite film surface, but their presence has no significant impact on the roughness of the MAPLE deposited layers. The current density-voltage (J-V) characteristics of the structures based on the nanocomposite films deposited by MAPLE revealed the critical role played by the layer composition and component ratio, an improvement in the electrical parameters values being achieved only for the films with a certain type and optimum amount of metal oxide nanoparticles.
Collapse
Affiliation(s)
- Marcela Socol
- National Institute of Materials Physics, 405A Atomistilor Street, 077125 Magurele, Romania
| | - Nicoleta Preda
- National Institute of Materials Physics, 405A Atomistilor Street, 077125 Magurele, Romania
| | - Carmen Breazu
- National Institute of Materials Physics, 405A Atomistilor Street, 077125 Magurele, Romania
| | - Andreea Costas
- National Institute of Materials Physics, 405A Atomistilor Street, 077125 Magurele, Romania
| | - Oana Rasoga
- National Institute of Materials Physics, 405A Atomistilor Street, 077125 Magurele, Romania
| | - Gabriela Petre
- National Institute of Materials Physics, 405A Atomistilor Street, 077125 Magurele, Romania
- Faculty of Physics, University of Bucharest, 405 Atomistilor Street, 077125 Magurele, Romania
| | - Gianina Popescu-Pelin
- National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania
| | - Sorina Iftimie
- Faculty of Physics, University of Bucharest, 405 Atomistilor Street, 077125 Magurele, Romania
| | - Andrei Stochioiu
- Faculty of Physics, University of Bucharest, 405 Atomistilor Street, 077125 Magurele, Romania
- National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania
| | - Gabriel Socol
- National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania
| | - Anca Stanculescu
- National Institute of Materials Physics, 405A Atomistilor Street, 077125 Magurele, Romania
| |
Collapse
|
3
|
Nguyen HT, Pham TN, Le LT, Nguyen TK, Le AT, Huy TQ, Thu Nguyen TT. Complexes of Ag and ZnO nanoparticles with BBR for enhancement of gastrointestinal antibacterial activity through the impacts of size and composition. RSC Adv 2023; 13:6027-6037. [PMID: 36814876 PMCID: PMC9939981 DOI: 10.1039/d3ra00053b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
This study introduces the bioformulations of Ag/BBR and ZnO/BBR complexes against pathogenic bacteria in the gastrointestinal tract. Without the use of toxic reduction agents, Ag and ZnO NPs were prepared using an electrochemical method and then facially mixed with BBR solution to form Ag/BBR and ZnO/BBR complexes. BBR molecules are strongly conjugated with Ag and ZnO NPs through coordinated bonding and electrostatic interaction. As a result, the presence of BBR significantly influenced the nanoparticle growth, resulting in the formation of core/shell structured Ag/BBR and ZnO/BBR NPs with small particle sizes. The antibacterial test showed that BBR, Ag, or ZnO components all contributed to the increase of antibacterial ability of Ag/BBR and ZnO/BBR NPs against both methicillin-resistant Staphylococcus aureus (MRSA) and Salmonella enteritidis (S. enteritidis). The bactericidal ability of Ag/BBR and ZnO/BBR complexes against MRSA was exhibited even at a concentration of four-fold dilution (corresponding to 1.25 g L-1 of BBR and 46.25 mg L-1 of Ag) and two-fold dilution (corresponding to 2.5 g L-1 of BBR and 10 mg L-1 of ZnO), respectively, while that of the Ag/BBR complex against S. enteritidis showed at a concentration of two-fold dilution corresponding to 2.5 g L-1 of BBR and 92.5 mg L-1 of Ag. The results obtained in this study support that Ag/BBR and ZnO/BBR complexes can be potential therapeutic agents against gastrointestinal infections.
Collapse
Affiliation(s)
- Hue Thi Nguyen
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam +84 978960658 +84 924926886
| | - Tuyet Nhung Pham
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam +84 978960658 +84 924926886
| | - Le Thi Le
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam +84 978960658 +84 924926886
| | - Tien Khi Nguyen
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam +84 978960658 +84 924926886
| | - Anh-Tuan Le
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam +84 978960658 +84 924926886
| | - Tran Quang Huy
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam +84 978960658 +84 924926886
| | - Thuy Thi Thu Nguyen
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam +84 978960658 +84 924926886
| |
Collapse
|
4
|
Takeshita T, Kinoshita D. Evaluation of darrow red–organosilane composite as a photosensitizer for application in dye-sensitized zinc oxide photocatalysts: DFT and TD-DFT studies. J Mol Model 2022; 28:407. [DOI: 10.1007/s00894-022-05397-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/18/2022] [Indexed: 12/03/2022]
|
5
|
Structural, Optical and Photocatalytic Properties of Mn Doped ZnO Nanoparticles Used as Photocatalysts for Azo-Dye Degradation under Visible Light. Catalysts 2022. [DOI: 10.3390/catal12111382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Doping ZnO with appropriate foreign metal and/or non-metal ions is one of the most promising ways to improve both the extension of ZnO photosensitization to the visible region and the separation of charge carriers. Herein, Mn-doped ZnO nanoparticles were synthesized using a precipitation method. The effect of the Mn amount on the physico-chemical properties of these nanomaterials was investigated using X-ray diffraction, Fourier-transform infrared spectroscopy, UV–visible diffuse reflectance spectroscopy, photoluminescence spectroscopy and scanning electron microscopy coupled with energy dispersive X-ray spectroscopy. The photocatalytic properties of the synthesized nanomaterials were assessed through methyl orange (MO) under visible light. The obtained results showed that the structural and optical properties of the synthesized Mn-ZnO nanomaterials depended greatly on the Mn amount. It was found that the substitution of Zn2+ by Mn2+/Mn3+ within the lattice of ZnO occurred. The photocatalytic experiments revealed that the sample containing 10 wt% exhibited the best MO conversion. For this sample, the discoloration reached 96%, while the chemical oxygen demand reached 1% after 820 min of visible illumination. The enhanced photocatalytic activity was attributed to the efficient separation of charge carriers. The active species quenching experiments showed that the holes are the main active species in MO degradation under visible light in the presence of 10%Mn-ZnO.
Collapse
|
6
|
Liu L, Zhong S, Zhang L, Liu B, Wang W. Ti doped BiOCl nanowires for piezoelectric photocatalytic degradation of organic pollutants. CATAL COMMUN 2022. [DOI: 10.1016/j.catcom.2022.106493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
7
|
Yin Y, Xu G, Xin Z, Liu Y, He X, Zhang H. Synthesis, characterization and photocatalytic degradation of dyestuffs with a composite material, 3-nOCoPc/SnO 2. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2058396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Yanbing Yin
- Heilongjiang Provincial Key Laboratory of Catalytic Synthesis for Fine Chemicals College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, China
| | - Guopeng Xu
- Heilongjiang Provincial Key Laboratory of Catalytic Synthesis for Fine Chemicals College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, China
| | - Zhaosong Xin
- Heilongjiang Provincial Key Laboratory of Catalytic Synthesis for Fine Chemicals College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, China
| | - Yang Liu
- Heilongjiang Provincial Key Laboratory of Catalytic Synthesis for Fine Chemicals College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, China
| | - Xifeng He
- Heilongjiang Provincial Key Laboratory of Catalytic Synthesis for Fine Chemicals College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, China
| | - Hongbo Zhang
- Heilongjiang Provincial Key Laboratory of Catalytic Synthesis for Fine Chemicals College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, China
| |
Collapse
|
8
|
Photosensitized Thermoplastic Nano-Photocatalysts Active in the Visible Light Range for Potential Applications Inside Extraterrestrial Facilities. NANOMATERIALS 2022; 12:nano12060996. [PMID: 35335809 PMCID: PMC8948973 DOI: 10.3390/nano12060996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/10/2022] [Accepted: 03/15/2022] [Indexed: 02/04/2023]
Abstract
Among different depollution methods, photocatalysis activated by solar light is promising for terrestrial outdoor applications. However, its use in underground structures and/or microgravity environments (e.g., extraterrestrial structures) is forbidden. In these cases, there are issues related to the energy emitted from the indoor lighting system because it is not high enough to promote the photocatalytic mechanism. Moreover, microgravity does not allow the recovery of the photocatalytic slurry from the depolluted solution. In this work, the synthesis of a filmable nanocomposite based on semiconductor nanoparticles supported by photosensitized copolyacrylates was performed through a bulk in situ radical copolymerization involving a photosensitizer macromonomer. The macromonomer and the nanocomposites were characterized through UV-Vis, fluorescence and NMR spectroscopies, gel permeation chromatography and thermogravimetric analysis. The photocatalytic activity of the sensitized nanocomposites was studied through photodegradation tests of common dyes and recalcitrant xenobiotic pollutants, employing UV-Vis and visible range (λ > 390 nm) light radiations. The sensitized nanocomposite photocatalytic performances increased about two times that of the unsensitized nanocomposite and that of visible range light radiation alone (>390 nm). The experimental data have shown that these new systems, applied as thin films, have the potential for use in indoor deep underground and extraterrestrial structures.
Collapse
|