1
|
Deymi P, Karimi H, Sharififard H, Salehi F. Simulation of solar photocatalytic reactor with immobilized photocatalyst for degradation of pharmaceutical pollutants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:2441-2454. [PMID: 39786510 DOI: 10.1007/s11356-024-35869-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 12/25/2024] [Indexed: 01/12/2025]
Abstract
This study focuses on the simulation of a solar photocatalytic reactor with linear parabolic reflectors and continuous fluid flow. The simulation approach was initially validated against experimental data reported by Miranda-Garcia et al. Catal Today 151:107-113 (2010), yielding a high degree of accuracy of approximately 0.99%. In this article, the effect of light intensity, Reynolds number, and fluid residence time on the performance of a photoreactor system using titanium dioxide catalyst and ibuprofen pollutant has been investigated. The results show that the intensity of light intensity has an effect of up to 29% on the decomposition of pollutant. With the increase of radiation intensity, the removal of pollutants reached from 85.5% to 99.46%. It has been demonstrated that higher flow turbulence significantly impacts removal efficiency, achieving rates of up to 71%. Moreover, enhancing the fluid's residence time through implementing a recirculating flow within the photoreactor has resulted in a 13% enhancement in removal efficiency. These results can be an important guide for optimizing the design of photocatalytic reactors. By adjusting the examined parameters, it is possible to obtain a higher efficiency in the removal of pollutants, which will be very effective in the scaling and industrial design of solar reactors.
Collapse
Affiliation(s)
- Parinaz Deymi
- Chemical Engineering Department, Yasouj University, Yasouj, I.R., Iran
| | - Hajir Karimi
- Chemical Engineering Department, Yasouj University, Yasouj, I.R., Iran.
| | | | - Fatemeh Salehi
- School of Engineering, Macquarie University, Sydney, NSW, 2109, Australia
| |
Collapse
|
2
|
Cervantes-Diaz KB, Drobek M, Julbe A, Cambedouzou J. SiC Foams for the Photocatalytic Degradation of Methylene Blue under Visible Light Irradiation. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1328. [PMID: 36836960 PMCID: PMC9959366 DOI: 10.3390/ma16041328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
SiC foams were synthesized by impregnating preceramic polymer into polyurethane foam templates, resulting in a photo-catalytically active material for the degradation of methylene blue. The crystalline structure, electronic properties, and photocatalytic performance of the SiC foams were characterized using a series of experimental techniques, including X-ray diffraction, electron microscopy, energy dispersive X-ray spectroscopy, N2 physisorption measurements, UV-visible spectroscopy, and methylene blue photodegradation tests. The original polyurethane template's microporous structure was maintained during the formation of the SiC foam, while additional mesopores were introduced by the porogen moieties added to the preceramic polymers. The prepared SiC-based photocatalyst showed attractive photocatalytic activity under visible light irradiation. This structured and reactive material offers good potential for application as a catalytic contactor or membrane reactor for the semi-continuous treatment of contaminated waste waters in ambient conditions.
Collapse
Affiliation(s)
| | | | | | - Julien Cambedouzou
- Institut Européen des Membranes (IEM), Univ Montpellier, CNRS, ENSCM, Place Eugene Bataillon, 34095 Montpellier, France
| |
Collapse
|
3
|
Tuci G, Liu Y, Rossin A, Guo X, Pham C, Giambastiani G, Pham-Huu C. Porous Silicon Carbide (SiC): A Chance for Improving Catalysts or Just Another Active-Phase Carrier? Chem Rev 2021; 121:10559-10665. [PMID: 34255488 DOI: 10.1021/acs.chemrev.1c00269] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
There is an obvious gap between efforts dedicated to the control of chemicophysical and morphological properties of catalyst active phases and the attention paid to the search of new materials to be employed as functional carriers in the upgrading of heterogeneous catalysts. Economic constraints and common habits in preparing heterogeneous catalysts have narrowed the selection of active-phase carriers to a handful of materials: oxide-based ceramics (e.g. Al2O3, SiO2, TiO2, and aluminosilicates-zeolites) and carbon. However, these carriers occasionally face chemicophysical constraints that limit their application in catalysis. For instance, oxides are easily corroded by acids or bases, and carbon is not resistant to oxidation. Therefore, these carriers cannot be recycled. Moreover, the poor thermal conductivity of metal oxide carriers often translates into permanent alterations of the catalyst active sites (i.e. metal active-phase sintering) that compromise the catalyst performance and its lifetime on run. Therefore, the development of new carriers for the design and synthesis of advanced functional catalytic materials and processes is an urgent priority for the heterogeneous catalysis of the future. Silicon carbide (SiC) is a non-oxide semiconductor with unique chemicophysical properties that make it highly attractive in several branches of catalysis. Accordingly, the past decade has witnessed a large increase of reports dedicated to the design of SiC-based catalysts, also in light of a steadily growing portfolio of porous SiC materials covering a wide range of well-controlled pore structure and surface properties. This review article provides a comprehensive overview on the synthesis and use of macro/mesoporous SiC materials in catalysis, stressing their unique features for the design of efficient, cost-effective, and easy to scale-up heterogeneous catalysts, outlining their success where other and more classical oxide-based supports failed. All applications of SiC in catalysis will be reviewed from the perspective of a given chemical reaction, highlighting all improvements rising from the use of SiC in terms of activity, selectivity, and process sustainability. We feel that the experienced viewpoint of SiC-based catalyst producers and end users (these authors) and their critical presentation of a comprehensive overview on the applications of SiC in catalysis will help the readership to create its own opinion on the central role of SiC for the future of heterogeneous catalysis.
Collapse
Affiliation(s)
- Giulia Tuci
- Institute of Chemistry of OrganoMetallic Compounds, ICCOM-CNR and Consorzio INSTM, Via Madonna del Piano, 10, 50019 Sesto F.no, Florence, Italy
| | - Yuefeng Liu
- Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, 116023 Dalian, China
| | - Andrea Rossin
- Institute of Chemistry of OrganoMetallic Compounds, ICCOM-CNR and Consorzio INSTM, Via Madonna del Piano, 10, 50019 Sesto F.no, Florence, Italy
| | - Xiangyun Guo
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Charlotte Pham
- SICAT SARL, 20 place des Halles, 67000 Strasbourg, France
| | - Giuliano Giambastiani
- Institute of Chemistry of OrganoMetallic Compounds, ICCOM-CNR and Consorzio INSTM, Via Madonna del Piano, 10, 50019 Sesto F.no, Florence, Italy.,Institute of Chemistry and Processes for Energy, Environment and Health (ICPEES), ECPM, UMR 7515 of the CNRS-University of Strasbourg, 25 rue Becquerel, 67087 Strasbourg Cedex 02, France
| | - Cuong Pham-Huu
- Institute of Chemistry and Processes for Energy, Environment and Health (ICPEES), ECPM, UMR 7515 of the CNRS-University of Strasbourg, 25 rue Becquerel, 67087 Strasbourg Cedex 02, France
| |
Collapse
|
4
|
TiO2 and TiO2-Carbon Hybrid Photocatalysts for Diuron Removal from Water. Catalysts 2021. [DOI: 10.3390/catal11040457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
TiO2 and TiO2-activated carbon (AC) photocatalysts have been prepared (by sol-gel synthesis), characterized, and tested in the removal of diuron from water under simulated solar light. The preparation variables of the two series of catalysts are: (i) heat-treatment temperature of bare TiO2 (350, 400, 450 and 500 °C) and (ii) activated carbon content (0.5, 1, 5, and 10 wt.%) in TiO2-AC samples heat-treated at 350 °C. The activated carbon was previously prepared by hydrothermal carbonization of saccharose and has spherical shape. The heat-treatment temperature does not determine the efficiency of TiO2 for diuron photocatalytic degradation, but clearly influences the diuron adsorption capacity. The capacity of TiO2-AC samples for diuron removal increases with the carbon content and it is the result of combined diuron adsorption and photodegradation. Thus, the sample with highest carbon content (10 wt.% nominal) leads to the highest diuron removal. The TiO2-AC photocatalysts have proved to be capable of degrading diuron previously adsorbed in dark conditions, which allows their regeneration.
Collapse
|
5
|
Li H, Zhang Y, Yan P, Li X, Gao X. Numerical analysis and experimental characterization of vortex flow at the gas-liquid interface in porous structure. Chem Eng Res Des 2021. [DOI: 10.1016/j.cherd.2020.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
6
|
García-Muñoz P, Fresno F, Lefevre C, Robert D, Keller N. Ti-Modified LaFeO 3/β-SiC Alveolar Foams as Immobilized Dual Catalysts with Combined Photo-Fenton and Photocatalytic Activity. ACS APPLIED MATERIALS & INTERFACES 2020; 12:57025-57037. [PMID: 33296165 DOI: 10.1021/acsami.0c16647] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ti-modified LaFeO3/β-SiC alveolar foams were used as immobilized, highly robust dual catalysts with combined photocatalytic wet peroxide oxidation and photocatalytic activity under UV-A light. They were prepared by incipient wetness impregnation of a β-SiC foam support, by implementing a sol-gel Pechini synthesis at the foam surface in the presence of dried amorphous sol-gel titania as a titanium source. The physicochemical and catalytic features suggest the stabilization at the foam surface of a substituted La1-xTixFeO3 catalyst analogous to its powdery counterpart. Taking 4-chlorophenol removal in water as a model reaction, its dual nature enables both high reaction rates and full total organic carbon (TOC) conversion because of a synergy effect, while its macroscopic structure overcomes the drawback of working with powdery catalysts. Further, it yields photonic efficiencies for degradation and mineralization of ca. 9.4 and 38%, respectively, that strongly outperform those obtained with a reference TiO2 P25/β-SiC foam photocatalyst. The enhancement of the catalyst robustness upon Ti modification prevents any Fe leaching to the solution, and therefore, the optimized macroscopic foam catalyst with 10 wt % catalyst loading operates through pure heterogeneous surface reactions, without any activity loss during reusability test cycles.
Collapse
Affiliation(s)
- Patricia García-Muñoz
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), CNRS/University of Strasbourg, 25 rue Becquerel, 67087 Strasbourg, France
| | - Fernando Fresno
- Photoactivated Processes Unit, IMDEA Energy, Móstoles, 28935 Madrid, Spain
| | - Christophe Lefevre
- Institut de Physique et de Chimie des Matériaux de Strasbourg (IPCMS), CNRS/University de Strasbourg, 23 rue du Loess, 67034 Strasbourg, France
| | - Didier Robert
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), CNRS/University of Strasbourg, 25 rue Becquerel, 67087 Strasbourg, France
| | - Nicolas Keller
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), CNRS/University of Strasbourg, 25 rue Becquerel, 67087 Strasbourg, France
| |
Collapse
|
7
|
Shojaeimehr T, Tasbihi M, Acharjya A, Thomas A, Schomäcker R, Schwarze M. Impact of operating conditions for the continuous-flow degradation of diclofenac with immobilized carbon nitride photocatalysts. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2019.112182] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
8
|
Promising application of SiC without co-catalyst in photocatalysis and ozone integrated process for aqueous organics degradation. Catal Today 2018. [DOI: 10.1016/j.cattod.2018.01.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Novel Precursor-Derived Meso-/Macroporous TiO₂/SiOC Nanocomposites with Highly Stable Anatase Nanophase Providing Visible Light Photocatalytic Activity and Superior Adsorption of Organic Dyes. MATERIALS 2018; 11:ma11030362. [PMID: 29494505 PMCID: PMC5872941 DOI: 10.3390/ma11030362] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 02/12/2018] [Accepted: 02/27/2018] [Indexed: 11/17/2022]
Abstract
Titania (TiO2) is considered to have immense potential as a photocatalyst, the anatase phase in particular. There have been numerous attempts to push the limits of its catalytic activity to higher wavelengths to harness the visible electromagnetic radiation. Most of the investigations till date have been restricted to fine-tuning the bandgap by doping, control of defect chemistry at the surface and several to first principle simulations either with limited success or success at the cost of complexities in processing. Here, we report a simple and elegant way of preparing ceramics through precursor chemistry which involves synthesis of macroporous and mesoporous nanocomposites with in situ formation of TiO2 nanocrystals into a robust and protecting SiOC matrix. The in situ nanoscaled TiO2 is anatase of size 9–10 nm, which is uniformly distributed in an amorphous SiOC matrix forming a new generation of nanocomposites that combine the robustness, structural stability and durability of the SiOC matrix while achieving nanoscaled TiO2 functionalities. The stabilization of the anatase phase even at temperature as high as 1200 °C was evident. With an average pore size of 6.8 nm, surface area of 129 m2/g (BET) and pore volume of 0.22 cm3/g (BET), mesoporosity was achieved in the nanocomposites. The composites exhibited visible light photocatalytic activity, which is attributed to the Ti–O–C/TiC bonds resulting in the reduction of band gap by 0.2 to 0.9 eV. Furthermore, the heterojunction formed between the amorphous SiOC and crystalline TiO2 is also expected to minimize the recombination rate of electron-hole pair, making these novel nanocomposites based on TiO2 extremely active in visible wavelength regime.
Collapse
|
10
|
Bamba D, Coulibaly M, Robert D. Nitrogen-containing organic compounds: Origins, toxicity and conditions of their photocatalytic mineralization over TiO 2. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 580:1489-1504. [PMID: 28041693 DOI: 10.1016/j.scitotenv.2016.12.130] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/19/2016] [Accepted: 12/19/2016] [Indexed: 05/21/2023]
Abstract
Sustainable water management remains a global concern to meet the food needs of industrial and agricultural activities. Therefore, pollution abatement techniques, cheap and environmentally, are highly desired and recommended. The present review is devoted to the origin and the toxicity of nitrogen-containing organic compounds in water. The progress made in removing these pollutants, in recent years, is addressed. However, a prominent place is given to the photocatalytic degradation process using the TiO2 as a semiconductor, the conditions for good mineralization and especially the factors influencing it. The parameters that impact the performance of this method are the pH, the temperature, the reactor used, the light, the concentration of the pollutant, the amount of catalyst, etc. Up to now, the importance of one parameter relative to another has not been established because in the context of the photocatalytic degradation, certain parameters are often tightly coupled. Consequently, the mineralization is dependent on the initial degree of oxidation of nitrogen atom contained in the pollutant to be degraded. The hydroxyl nitrogen is primarily converted into nitrate ions (NO3-), while the amides and the primary amines are converted into ammonium ions (NH4+).
Collapse
Affiliation(s)
- Drissa Bamba
- Laboratoire de Chimie des Eaux (LCE) - Ecole Normale Supérieure d'Abidjan, 08 BP 10 Abidjan 08, Côte d'Ivoire; ICPEES-UMR 7515 CNRS - Université de Strasbourg, Antenne de Saint-Avold, Rue Victor Démange, 57500 Saint-Avold, France.
| | - Mariame Coulibaly
- Laboratoire de Chimie des Eaux (LCE) - Ecole Normale Supérieure d'Abidjan, 08 BP 10 Abidjan 08, Côte d'Ivoire.
| | - Didier Robert
- ICPEES-UMR 7515 CNRS - Université de Strasbourg, Antenne de Saint-Avold, Rue Victor Démange, 57500 Saint-Avold, France.
| |
Collapse
|
11
|
Fan X, Ou X, Xing F, Turley GA, Denissenko P, Williams MA, Batail N, Pham C, Lapkin AA. Microtomography-based numerical simulations of heat transfer and fluid flow through β -SiC open-cell foams for catalysis. Catal Today 2016. [DOI: 10.1016/j.cattod.2015.12.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Hu J, Zhong Z, Zhang F, Xing W, Jin W, Xu N. High-efficiency, Synergistic ZnO-Coated SiC Photocatalytic Filter with Antibacterial Properties. Ind Eng Chem Res 2016. [DOI: 10.1021/acs.iecr.6b00988] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jian Hu
- State Key
Laboratory of Materials-Oriented
Chemical Engineering, National Engineering Research Center for Specialized
Separation Membranes Nanjing Tech University (former Nanjing University of Technology), Nanjing, Jiangsu 210009, China
| | - Zhaoxiang Zhong
- State Key
Laboratory of Materials-Oriented
Chemical Engineering, National Engineering Research Center for Specialized
Separation Membranes Nanjing Tech University (former Nanjing University of Technology), Nanjing, Jiangsu 210009, China
| | - Feng Zhang
- State Key
Laboratory of Materials-Oriented
Chemical Engineering, National Engineering Research Center for Specialized
Separation Membranes Nanjing Tech University (former Nanjing University of Technology), Nanjing, Jiangsu 210009, China
| | - Weihong Xing
- State Key
Laboratory of Materials-Oriented
Chemical Engineering, National Engineering Research Center for Specialized
Separation Membranes Nanjing Tech University (former Nanjing University of Technology), Nanjing, Jiangsu 210009, China
| | - Wanqin Jin
- State Key
Laboratory of Materials-Oriented
Chemical Engineering, National Engineering Research Center for Specialized
Separation Membranes Nanjing Tech University (former Nanjing University of Technology), Nanjing, Jiangsu 210009, China
| | - Nanping Xu
- State Key
Laboratory of Materials-Oriented
Chemical Engineering, National Engineering Research Center for Specialized
Separation Membranes Nanjing Tech University (former Nanjing University of Technology), Nanjing, Jiangsu 210009, China
| |
Collapse
|
13
|
Duong-Viet C, Ba H, El-Berrichi Z, Nhut JM, Ledoux MJ, Liu Y, Pham-Huu C. Silicon carbide foam as a porous support platform for catalytic applications. NEW J CHEM 2016. [DOI: 10.1039/c5nj02847g] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review provides an overview of the use of foam-structured SiC as a porous support platform in some typical catalytic processes both for gas-phase and liquid-phase reactions, such as H2S selective oxidation, Friedel–Crafts benzoylation and Fischer–Tropsch synthesis.
Collapse
Affiliation(s)
- Cuong Duong-Viet
- Institut de Chimie et Procédés pour l'Energie
- l'Environnement et la Santé (ICPEES)
- ECPM
- UMR 7515 du CNRS-Université de Strasbourg
- 67087 Strasbourg Cedex 02
| | - Housseinou Ba
- Institut de Chimie et Procédés pour l'Energie
- l'Environnement et la Santé (ICPEES)
- ECPM
- UMR 7515 du CNRS-Université de Strasbourg
- 67087 Strasbourg Cedex 02
| | - Zora El-Berrichi
- Laboratoire de Catalyse et Synthèse Organique
- Faculté des Sciences
- Université de Tlemcen BP119
- Algeria
| | - Jean-Mario Nhut
- Institut de Chimie et Procédés pour l'Energie
- l'Environnement et la Santé (ICPEES)
- ECPM
- UMR 7515 du CNRS-Université de Strasbourg
- 67087 Strasbourg Cedex 02
| | - Marc J. Ledoux
- Institut de Chimie et Procédés pour l'Energie
- l'Environnement et la Santé (ICPEES)
- ECPM
- UMR 7515 du CNRS-Université de Strasbourg
- 67087 Strasbourg Cedex 02
| | - Yuefeng Liu
- Institut de Chimie et Procédés pour l'Energie
- l'Environnement et la Santé (ICPEES)
- ECPM
- UMR 7515 du CNRS-Université de Strasbourg
- 67087 Strasbourg Cedex 02
| | - Cuong Pham-Huu
- Institut de Chimie et Procédés pour l'Energie
- l'Environnement et la Santé (ICPEES)
- ECPM
- UMR 7515 du CNRS-Université de Strasbourg
- 67087 Strasbourg Cedex 02
| |
Collapse
|
14
|
Synthesis of N–TiO2–P25 coated on ceramic foam by modified sol–gel method for Acid Red 73 degradation under visible-light irradiation. RESEARCH ON CHEMICAL INTERMEDIATES 2014. [DOI: 10.1007/s11164-014-1546-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Kouamé AN, Masson R, Robert D, Keller N, Keller V. β-SiC foams as a promising structured photocatalytic support for water and air detoxification. Catal Today 2013. [DOI: 10.1016/j.cattod.2012.12.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Kouamé NA, Robert D, Keller V, Keller N, Pham C, Nguyen P. TiO2/β-SiC foam-structured photoreactor for continuous wastewater treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2012; 19:3727-3734. [PMID: 23054734 DOI: 10.1007/s11356-011-0719-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 12/21/2011] [Indexed: 06/01/2023]
Abstract
INTRODUCTION This study of photocatalytic degradation of wastewater was carried out in alveolar cell β-SiC foam-structured photocatalytic reactors working in a recirculation mode. The immobilization of TiO2 on β-SiC foams was efficiently obtained through a sol-gel technique in acidic conditions. DISCUSSION In order to optimize degradation yields obtained by the foam-structured prototype reactor for the photocatalytic water treatment, the operating conditions of the photoreactor have been investigated and the efficiency of the process was evaluated by measuring the photocatalytic degradation of Diuron (3-(3,4-dichlorophenyl)-1,1-dimethyl-urea)) under UV irradiation. Kinetic studies were carried out by investigating the influence of different parameters controlling the reaction (TiO2 loading and β-SiC foam cell size). The ageing of TiO2/β-SiC foam photocatalytic materials and the mineralization (TOC, Cl-, NO3- and NH4+) of Diuron were investigated.
Collapse
Affiliation(s)
- Natalie Amoin Kouamé
- Antenne de Saint-Avold, Université de Lorraine, Rue Victor Demange, 57500, Saint-Avold, France
| | | | | | | | | | | |
Collapse
|
17
|
|
18
|
Gómez-Solís C, Juárez-Ramírez I, Moctezuma E, Torres-Martínez LM. Photodegradation of indigo carmine and methylene blue dyes in aqueous solution by SiC-TiO2 catalysts prepared by sol-gel. JOURNAL OF HAZARDOUS MATERIALS 2012; 217-218:194-199. [PMID: 22464585 DOI: 10.1016/j.jhazmat.2012.03.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 03/03/2012] [Accepted: 03/06/2012] [Indexed: 05/31/2023]
Abstract
Indigo carmine and methylene blue dyes in aqueous solution were photodegraded using SiC-TiO(2) catalysts prepared by sol-gel method. After thermal treatment at 450°C, SiC-TiO(2) catalysts prepared in this work showed the presence of SiC and TiO(2) anatase phase. Those compounds showed specific surface area values around 22-25 m(2)g(-1), and energy band gap values close to 3.05 eV. In comparison with TiO(2) (P25), SiC-TiO(2) catalysts showed the highest activity for indigo carmine and methylene blue degradation, but this activity cannot be attributed to the properties above mentioned. Therefore, photocatalytic performance is due to the synergy effect between SiC and TiO(2) particles caused by the sol-gel method used to prepare the SiC-TiO(2) catalysts. TiO(2) nanoparticles are well dispersed onto SiC surface allowing the transfer of electronic charges between SiC and TiO(2) semiconductors, which avoid the fast recombination of the electron-hole pair during the photocatalytic process.
Collapse
Affiliation(s)
- Christian Gómez-Solís
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | | | | | | |
Collapse
|