• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (5090957)   Today's Articles (39)
For: Lee D, Lee MS, Lee JY, Kim S, Eom H, Moon DJ, Lee K. The review of Cr-free Fe-based catalysts for high-temperature water-gas shift reactions. Catal Today 2013;210:2-9. [DOI: 10.1016/j.cattod.2012.12.012] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Number Cited by Other Article(s)
1
Kokumai TM, Ferreira LER, Strapasson GB, Pasquale L, Manna L, Colombo M, Zanchet D. Insights from Modulation-Excitation Spectroscopy into the Role of Pt Geometrical Sites in the WGS Reaction. ACS APPLIED MATERIALS & INTERFACES 2025;17:13221-13231. [PMID: 39985488 DOI: 10.1021/acsami.4c21397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2025]
2
Yalcin O, Sourav S, Wachs IE. Design of Cr-Free Promoted Copper-Iron Oxide-Based High-Temperature Water-Gas Shift Catalysts. ACS Catal 2023;13:12681-12691. [PMID: 37822859 PMCID: PMC10563126 DOI: 10.1021/acscatal.3c02474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/19/2023] [Indexed: 10/13/2023]
3
Alshareef R, Nahil MA, Williams PT. Hydrogen Production by Three-Stage (i) Pyrolysis, (ii) Catalytic Steam Reforming, and (iii) Water Gas Shift Processing of Waste Plastic. ENERGY & FUELS : AN AMERICAN CHEMICAL SOCIETY JOURNAL 2023;37:3894-3907. [PMID: 36897817 PMCID: PMC9986875 DOI: 10.1021/acs.energyfuels.2c02934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 02/02/2023] [Indexed: 05/20/2023]
4
Yin P, Yang Y, Yan H, Wei M. Theoretical Calculations on Metal Catalysts Toward Water-Gas Shift Reaction: a Review. Chemistry 2023;29:e202203781. [PMID: 36723438 DOI: 10.1002/chem.202203781] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 01/31/2023] [Indexed: 02/02/2023]
5
Ariëns MI, van de Water L, Dugulan AI, Brück E, Hensen E. Substituting Chromium in Iron-Based Catalysts for the High-Temperature Water–Gas Shift Reaction. ACS Catal 2022;12:13838-13852. [DOI: 10.1021/acscatal.2c03871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/25/2022] [Indexed: 11/29/2022]
6
Meng Y, Liu X, Ma Y, Gao X, Wen X. Investigation of water gas shift reactivity on Fe5C2 (111): A DFT study. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
7
Plasma-catalytic CO2 hydrogenation to ethane in a dielectric barrier discharge reactor. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.101882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
8
Gao X, Lin X, Xie X, Li J, Wu X, Li Y, Kawi S. Modification strategies of heterogeneous catalysts for water-gas shift reactions. REACT CHEM ENG 2022. [DOI: 10.1039/d1re00537e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
9
Ariëns M, van de Water L, Dugulan A, Brück E, Hensen E. Copper promotion of chromium-doped iron oxide water-gas shift catalysts under industrially relevant conditions. J Catal 2022. [DOI: 10.1016/j.jcat.2021.12.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
10
Water Gas Shift Reaction Activity on Fe (110): A DFT Study. Catalysts 2021. [DOI: 10.3390/catal12010027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]  Open
11
Pei Q, Qiu G, Yu Y, Wang J, Tan KC, Guo J, Liu L, Cao H, He T, Chen P. Fabrication of More Oxygen Vacancies and Depression of Encapsulation for Superior Catalysis in the Water-Gas Shift Reaction. J Phys Chem Lett 2021;12:10646-10653. [PMID: 34704756 DOI: 10.1021/acs.jpclett.1c02857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
12
Bulavchenko OA, Afonasenko TN, Ivanchikova AV, Murzin VY, Kremneva AM, Saraev AA, Kaichev VV, Tsybulya SV. In Situ Study of Reduction of MnxCo3-xO4 Mixed Oxides: The Role of Manganese Content. Inorg Chem 2021;60:16518-16528. [PMID: 34648258 DOI: 10.1021/acs.inorgchem.1c02379] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
13
Salcedo A, Irigoyen B. DFT insights into structural effects of Ni-Cu/CeO2 catalysts for CO selective reaction towards water-gas shift. Phys Chem Chem Phys 2021;23:3826-3836. [PMID: 33533765 DOI: 10.1039/d0cp05613h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
14
Park YM, Cho JM, Han GY, Bae JW. Roles of highly ordered mesoporous structures of Fe–Ni bimetal oxides for an enhanced high-temperature water-gas shift reaction activity. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00164g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
15
Matsui H, Ishiguro N, Suzuki Y, Wakamatsu K, Yamada C, Sato K, Maejima N, Uruga T, Tada M. Reversible structural transformation and redox properties of Cr-loaded iron oxide dendrites studied by in situ XANES spectroscopy. Phys Chem Chem Phys 2020;22:28093-28099. [PMID: 33289731 DOI: 10.1039/d0cp04416d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
16
FeCeOx Supported Ni, Sn Catalysts for the High-Temperature Water–Gas Shift Reaction. Catalysts 2020. [DOI: 10.3390/catal10060639] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]  Open
17
High Temperature Water Gas Shift Reactivity of Novel Perovskite Catalysts. Catalysts 2020. [DOI: 10.3390/catal10050582] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]  Open
18
Pt/Re/CeO2 Based Catalysts for CO-Water–Gas Shift Reaction: from Powders to Structured Catalyst. Catalysts 2020. [DOI: 10.3390/catal10050564] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]  Open
19
Efficient Waste to Energy Conversion Based on Co-CeO2 Catalyzed Water-Gas Shift Reaction. Catalysts 2020. [DOI: 10.3390/catal10040420] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]  Open
20
Cr-Free, Cu Promoted Fe Oxide-Based Catalysts for High-Temperature Water-Gas Shift (HT-WGS) Reaction. Catalysts 2020. [DOI: 10.3390/catal10030305] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]  Open
21
Zhou H, Saad JM, Li Q, Xu Y. Steam reforming of polystyrene at a low temperature for high H2/CO gas with bimetallic Ni-Fe/ZrO2 catalyst. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020;104:42-50. [PMID: 31962216 DOI: 10.1016/j.wasman.2020.01.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/11/2019] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
22
Reverse Water-Gas Shift Iron Catalyst Derived from Magnetite. Catalysts 2019. [DOI: 10.3390/catal9090773] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]  Open
23
Luo X, Hong Y, Shi K, Yang G, Pang C, Lester E, Jiang L, Wu T. Investigation on Co–Modified Ni x Mg y O Solid Solutions for Hydrogen Production from Steam Reforming of Acetic Acid and a Model Blend. ChemistrySelect 2019. [DOI: 10.1002/slct.201900687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
24
Bulavchenko OA, Vinokurov ZS, Saraev AA, Tsapina AM, Trigub AL, Gerasimov EY, Gladky AY, Fedorov AV, Yakovlev VA, Kaichev VV. The Influence of Cu and Al Additives on Reduction of Iron(III) Oxide: In Situ XRD and XANES Study. Inorg Chem 2019;58:4842-4850. [PMID: 30946575 DOI: 10.1021/acs.inorgchem.8b03403] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
25
Zhan Y, Liu Y, Peng X, Zhao W, Zhang Y, Wang X, Au CT, Jiang L. Molecular-level understanding of reaction path optimization as a function of shape concerning the metal–support interaction effect of Co/CeO2 on water-gas shift catalysis. Catal Sci Technol 2019. [DOI: 10.1039/c9cy01260e] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
26
Ashok J, Wai MH, Kawi S. Nickel-based Catalysts for High-temperature Water Gas Shift Reaction-Methane Suppression. ChemCatChem 2018. [DOI: 10.1002/cctc.201800031] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
27
Zhu M, Wachs IE. A perspective on chromium-Free iron oxide-based catalysts for high temperature water-gas shift reaction. Catal Today 2018. [DOI: 10.1016/j.cattod.2017.08.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
28
Damma D, Boningari T, Smirniotis PG. High-temperature water-gas shift over Fe/Ce/Co spinel catalysts: Study of the promotional effect of Ce and Co. MOLECULAR CATALYSIS 2018. [DOI: 10.1016/j.mcat.2017.10.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
29
Bulavchenko OA, Gerasimov EY, Afonasenko TN. Reduction of double manganese–cobalt oxides: in situ XRD and TPR study. Dalton Trans 2018;47:17153-17159. [DOI: 10.1039/c8dt04137g] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
30
Porous MnO2/CNT catalysts with a large specific surface area for the decomposition of hydrogen peroxide. KOREAN J CHEM ENG 2017. [DOI: 10.1007/s11814-017-0120-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
31
Jha A, Lee YL, Jang WJ, Shim JO, Jeon KW, Na HS, Kim HM, Roh HS, Jeong DW, Jeon SG, Na JG, Yoon WL. Effect of the redox properties of support oxide over cobalt-based catalysts in high temperature water-gas shift reaction. MOLECULAR CATALYSIS 2017. [DOI: 10.1016/j.mcat.2016.12.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
32
Optimization of Cobalt Loading in Co–CeO2 Catalyst for the High Temperature Water–Gas Shift Reaction. Top Catal 2017. [DOI: 10.1007/s11244-017-0776-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
33
Devaiah D, Smirniotis PG. Effects of the Ce and Cr Contents in Fe–Ce–Cr Ferrite Spinels on the High-Temperature Water–Gas Shift Reaction. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.6b04707] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
34
Unique multi-phase Co/Fe/CoFe 2 O 4 by water–gas shift reaction, CO oxidation and enhanced supercapacitor performances. J IND ENG CHEM 2016. [DOI: 10.1016/j.jiec.2016.07.049] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
35
Keturakis CJ, Zhu M, Gibson EK, Daturi M, Tao F, Frenkel AI, Wachs IE. Dynamics of CrO3–Fe2O3 Catalysts during the High-Temperature Water-Gas Shift Reaction: Molecular Structures and Reactivity. ACS Catal 2016. [DOI: 10.1021/acscatal.6b01281] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
36
Zhu M, Rocha TCR, Lunkenbein T, Knop-Gericke A, Schlögl R, Wachs IE. Promotion Mechanisms of Iron Oxide-Based High Temperature Water–Gas Shift Catalysts by Chromium and Copper. ACS Catal 2016. [DOI: 10.1021/acscatal.6b00698] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
37
Li C, Sivaranjani K, Kim JM. Synthesis of alkali promoted mesoporous, nanocrystalline Pd/TiO2 catalyst for water gas shift reaction. Catal Today 2016. [DOI: 10.1016/j.cattod.2015.08.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
38
Zhu M, Wachs IE. Resolving the Reaction Mechanism for H2 Formation from High-Temperature Water–Gas Shift by Chromium–Iron Oxide Catalysts. ACS Catal 2016. [DOI: 10.1021/acscatal.6b00659] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
39
Ashok J, Ang ML, Terence PZL, Kawi S. Promotion of the Water-Gas-Shift Reaction by Nickel Hydroxyl Species in Partially Reduced Nickel-Containing Phyllosilicate Catalysts. ChemCatChem 2016. [DOI: 10.1002/cctc.201501284] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
40
Zhu M, Wachs IE. Determining Number of Active Sites and TOF for the High-Temperature Water Gas Shift Reaction by Iron Oxide-Based Catalysts. ACS Catal 2016. [DOI: 10.1021/acscatal.5b02961] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
41
Wang X, Perret N, Delannoy L, Louis C, Keane MA. Selective gas phase hydrogenation of nitroarenes over Mo2C-supported Au–Pd. Catal Sci Technol 2016. [DOI: 10.1039/c6cy00514d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
42
Zhu M, Wachs IE. Iron-Based Catalysts for the High-Temperature Water–Gas Shift (HT-WGS) Reaction: A Review. ACS Catal 2015. [DOI: 10.1021/acscatal.5b02594] [Citation(s) in RCA: 200] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
43
Baeza A, Guillena G, Ramón DJ. Magnetite and Metal-Impregnated Magnetite Catalysts in Organic Synthesis: A Very Old Concept with New Promising Perspectives. ChemCatChem 2015. [DOI: 10.1002/cctc.201500854] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
44
Simplified direct pyrolysis method for preparation of nanocrystalline iron based catalysts for H 2 purification via high temperature water gas shift reaction. Chem Eng Res Des 2015. [DOI: 10.1016/j.cherd.2014.11.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
45
Lang C, Secordel X, Zimmermann Y, Kiennemann A, Courson C. High-temperature Water–Gas Shift catalysts for hydrogen enrichment of a gas produced by biomass steam gasification. CR CHIM 2015. [DOI: 10.1016/j.crci.2014.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
46
Meshkani F, Rezaei M. Preparation of mesoporous nanocrystalline alkali promoted chromium free catalysts (Fe2O3–Al2O3–NiO) for a high temperature water gas shift reaction. RSC Adv 2015. [DOI: 10.1039/c4ra13508c] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]  Open
47
Saw E, Oemar U, Tan X, Du Y, Borgna A, Hidajat K, Kawi S. Bimetallic Ni–Cu catalyst supported on CeO2 for high-temperature water–gas shift reaction: Methane suppression via enhanced CO adsorption. J Catal 2014. [DOI: 10.1016/j.jcat.2014.03.015] [Citation(s) in RCA: 230] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
PrevPage 1 of 1 1Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA