1
|
Rudzka A, Reiter T, Kroutil W, Borowiecki P. Bienzymatic Dynamic Kinetic Resolution of Secondary Alcohols by Esterification/Racemization in Water. Angew Chem Int Ed Engl 2025; 64:e202420133. [PMID: 39576712 DOI: 10.1002/anie.202420133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 11/24/2024]
Abstract
Dynamic kinetic resolution (DKR) is a key method used to prepare optically pure compounds in 100 % theoretical yield starting from racemic substrates by combining the interconversion of substrate enantiomers with an enantioselective transformation. Various chemoenzymatic DKR approaches have been developed to deracemize secondary alcohols, typically requiring an organic solvent to facilitate enantioselective acylation, primarily catalyzed by lipases, alongside racemization mediated by an achiral, non-enzymatic catalyst. Achieving both steps in an aqueous solution remained elusive. Herein, we report a DKR of racemic sec-alcohols in an aqueous solution requiring only two biocatalysts. The first key to success was to achieve fast racemization in a buffer employing a non-stereoselective variant of an alcohol dehydrogenase (Lk-ADH-Prince) via a hydrogen-borrowing oxidation-reduction sequence. Engineered variants of the acyltransferase from Mycobacterium smegmatis (MsAcT) enabled enantioselective acyl transfer in water. Besides the appropriate choice of the enzymes, identifying a suitable acyl donor was a second key to the success. The DKR was successfully demonstrated using (R)-selective MsAcT variants for a broad range of racemic (hetero)benzylic alcohols with 2,2,2-trifluoroethyl acetate as the acyl donor, yielding (R)-acetates with up to >99 % conv. and high-to-excellent optical purity (83-99.9 % ee). The (S)-acetates were accessible using a stereocomplementary (S)-selective MsAcT variant. Notably, substrate concentrations of up to 400 mM were tolerated in selected cases.
Collapse
Affiliation(s)
- Aleksandra Rudzka
- Laboratory of Biocatalysis and Biotransformation, Department of Drugs Technology and Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Koszykowa 75, 00-662, Warsaw, Poland
| | - Tamara Reiter
- Department of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, Heinrichstrasse 28, 8010, Graz, Austria
| | - Wolfgang Kroutil
- Department of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, Heinrichstrasse 28, 8010, Graz, Austria
- Field of Excellence BioHealth-, University of Graz, Heinrichstrasse 28, 8010, Graz, Austria
| | - Paweł Borowiecki
- Laboratory of Biocatalysis and Biotransformation, Department of Drugs Technology and Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Koszykowa 75, 00-662, Warsaw, Poland
| |
Collapse
|
2
|
Dupont J, Leal BC, Lozano P, Monteiro AL, Migowski P, Scholten JD. Ionic Liquids in Metal, Photo-, Electro-, and (Bio) Catalysis. Chem Rev 2024; 124:5227-5420. [PMID: 38661578 DOI: 10.1021/acs.chemrev.3c00379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Ionic liquids (ILs) have unique physicochemical properties that make them advantageous for catalysis, such as low vapor pressure, non-flammability, high thermal and chemical stabilities, and the ability to enhance the activity and stability of (bio)catalysts. ILs can improve the efficiency, selectivity, and sustainability of bio(transformations) by acting as activators of enzymes, selectively dissolving substrates and products, and reducing toxicity. They can also be recycled and reused multiple times without losing their effectiveness. ILs based on imidazolium cation are preferred for structural organization aspects, with a semiorganized layer surrounding the catalyst. ILs act as a container, providing a confined space that allows modulation of electronic and geometric effects, miscibility of reactants and products, and residence time of species. ILs can stabilize ionic and radical species and control the catalytic activity of dynamic processes. Supported IL phase (SILP) derivatives and polymeric ILs (PILs) are good options for molecular engineering of greener catalytic processes. The major factors governing metal, photo-, electro-, and biocatalysts in ILs are discussed in detail based on the vast literature available over the past two and a half decades. Catalytic reactions, ranging from hydrogenation and cross-coupling to oxidations, promoted by homogeneous and heterogeneous catalysts in both single and multiphase conditions, are extensively reviewed and discussed considering the knowledge accumulated until now.
Collapse
Affiliation(s)
- Jairton Dupont
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, P.O. Box 4021, E-30100 Murcia, Spain
| | - Bárbara C Leal
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Pedro Lozano
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, P.O. Box 4021, E-30100 Murcia, Spain
| | - Adriano L Monteiro
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Pedro Migowski
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Jackson D Scholten
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| |
Collapse
|
3
|
Itoh T. Enzymatic Reactions using Ionic Liquids for Green Sustainable Chemical Process; Stabilization and Activation of Lipases. CHEM REC 2023; 23:e202200275. [PMID: 36631274 DOI: 10.1002/tcr.202200275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/20/2022] [Indexed: 01/13/2023]
Abstract
The enzymatic reaction is highly respected from an environmentally-friendly point-of-view. Optimization of the reaction media and supporting materials of enzymes must be investigated in parallel with the effort to develop new enzymes. Lipases are frequently used for organic syntheses as synthetic tools even industry because of their acceptance of having a broad range of substrates, stability, and availability. We have investigated the possibility of ILs as both a solvent and activating or stabilization agent of enzymes, in particular, lipase as a model enzyme. ILs allowed recyclable use of a lipase and significant acceleration of transesterification, and also enhanced the stability and reaction activity of a lipase by immobilization through a lyophilization process. We discuss how we enhanced the enzyme capability using the IL engineering focusing on lipase-catalyzed reactions, i. e., realization of the recyclable use of an enzyme, how ILs mediated the enhanced reaction rate, and improved the stability of the enzyme.
Collapse
Affiliation(s)
- Toshiyuki Itoh
- Toyota Physical and Chemical Research Institute, 41-1 Yokomichi, Nagakute city, Aichi 480-1192, Japan
| |
Collapse
|
4
|
Cho J, Kim K, Park J, Kim M. Asymmetric Synthesis of Biaryl Diols via Dynamic Kinetic Resolution. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jeonghun Cho
- Department of Chemistry Pohang University of Science and Technology 77 Cheongam‐ro, Pohang 37673 Republic of Korea
| | - Kyungwoo Kim
- Department of Chemistry Pohang University of Science and Technology 77 Cheongam‐ro, Pohang 37673 Republic of Korea
| | - Jaiwook Park
- Department of Chemistry Pohang University of Science and Technology 77 Cheongam‐ro, Pohang 37673 Republic of Korea
| | - Mahn‐Joo Kim
- Department of Chemistry Pohang University of Science and Technology 77 Cheongam‐ro, Pohang 37673 Republic of Korea
| |
Collapse
|
5
|
De Almeida LA, Marcondes TH, Milagre CDF, Milagre HMS. Lipase‐oxovanadium heterogeneous catalysis system: a robust protocol for the dynamic kinetic resolution of
sec
‐alcohols. ChemCatChem 2020. [DOI: 10.1002/cctc.202000292] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Laiza A. De Almeida
- Institute of Chemistry São Paulo State University (Unesp) Prof. Francisco Degni, 55 – Quitandinha Araraquara São Paulo 14800-060 Brazil
| | - Thayna H. Marcondes
- Institute of Chemistry São Paulo State University (Unesp) Prof. Francisco Degni, 55 – Quitandinha Araraquara São Paulo 14800-060 Brazil
| | - Cintia D. F. Milagre
- Institute of Chemistry São Paulo State University (Unesp) Prof. Francisco Degni, 55 – Quitandinha Araraquara São Paulo 14800-060 Brazil
| | - Humberto M. S. Milagre
- Institute of Chemistry São Paulo State University (Unesp) Prof. Francisco Degni, 55 – Quitandinha Araraquara São Paulo 14800-060 Brazil
| |
Collapse
|
6
|
Elgharbawy AA, Moniruzzaman M, Goto M. Recent advances of enzymatic reactions in ionic liquids: Part II. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2019.107426] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
7
|
Foley AM, Maguire AR. The Impact of Recent Developments in Technologies which Enable the Increased Use of Biocatalysts. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900208] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Aoife M. Foley
- School of Chemistry; Analytical & Biological Chemistry Research Facility; Synthesis & Solid State Pharmaceutical Centre; University College Cork; Cork Ireland
| | - Anita R. Maguire
- School of Chemistry & School of Pharmacy; Analytical & Biological Chemistry Research Facility; Synthesis & Solid State Pharmaceutical Centre; University College Cork; Cork Ireland
| |
Collapse
|
8
|
Todea A, Borza P, Cimporescu A, Paul C, Peter F. Continuous kinetic resolution of aliphatic and aromatic secondary alcohols by sol-gel entrapped lipases in packed bed bioreactors. Catal Today 2018. [DOI: 10.1016/j.cattod.2017.02.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
The Enhanced Intramolecular Energy Transfer and Strengthened ff Luminescence of a Stable Helical Eu Complex in Ionic Liquids. Molecules 2018; 23:molecules23020055. [PMID: 29364146 PMCID: PMC6017298 DOI: 10.3390/molecules23020055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/14/2018] [Accepted: 01/17/2018] [Indexed: 11/17/2022] Open
Abstract
The luminescence of a Eu complex (EuL) is enhanced by stabilization of the coordination structure in highly viscous ionic liquids. The EuL was found to maintain a stable single helical structure both in organic solvents and in the ionic liquids [BMIM][PF₆] and [EMIM][PF₆]. A colorless solution of EuL dissolved in [BMIM][PF₆] exhibits bright red luminescence with a quantum yield of 32.3%, a value that is much higher than that in acetonitrile (12%). Estimated rate constants for the energy relaxation pathway indicate that the energy transfer efficiency is enhanced in [BMIM][PF₆] as a result of the suppression of molecular fluctuations in the ligands. Additionally, a highly luminescent helical structure is preserved in [EMIM][PF₆] up to 120 °C.
Collapse
|
10
|
Activation of Lipase-Catalyzed Reactions Using Ionic Liquids for Organic Synthesis. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2018; 168:79-104. [PMID: 29744541 DOI: 10.1007/10_2018_62] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The use of ionic liquids to replace organic or aqueous solvents in biocatalysis processes has recently received great attention, and much progress has been made in this area; the lipase-catalyzed reactions are the most successful. Recent developments in the application of ionic liquids as solvents in lipase-catalyzed reactions for organic synthesis are reviewed, focusing on the ionic liquid mediated activation method of lipase-catalyzed reactions.
Collapse
|
11
|
Lipases in asymmetric transformations: Recent advances in classical kinetic resolution and lipase–metal combinations for dynamic processes. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.08.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Megyesi R, Mándi A, Kurtán T, Forró E, Fülöp F. Dynamic Kinetic Resolution of Ethyl 1,2,3,4-Tetrahydro-β-carboline-1-carboxylate: Use of Different Hydrolases for Stereocomplementary Processes. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700571] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Rita Megyesi
- Institute of Pharmaceutical Chemistry; University of Szeged; Eötvös u. 6 6720 Szeged Hungary
| | - Attila Mándi
- Department of Organic Chemistry; University of Debrecen; P. O. Box 400 4002 Debrecen Hungary
| | - Tibor Kurtán
- Department of Organic Chemistry; University of Debrecen; P. O. Box 400 4002 Debrecen Hungary
| | - Enikő Forró
- Institute of Pharmaceutical Chemistry; University of Szeged; Eötvös u. 6 6720 Szeged Hungary
| | - Ferenc Fülöp
- Institute of Pharmaceutical Chemistry; University of Szeged; Eötvös u. 6 6720 Szeged Hungary
- MTA-SZTE Stereochemistry Research Group; Hungarian Academy of Sciences; Eötvös u. 6 6720 Szeged Hungary
| |
Collapse
|
13
|
Affiliation(s)
- Toshiyuki Itoh
- Department
of Chemistry and Biotechnology, Graduate School of Engineering and ‡Center for Research
on Green Sustainable Chemistry, Tottori University, 4-101 Koyama-minami, Tottori 680-8552, Japan
| |
Collapse
|
14
|
Lipase-Catalyzed Synthesis of Indolyl 4H-Chromenes via a Multicomponent Reaction in Ionic Liquid. Catalysts 2017. [DOI: 10.3390/catal7060185] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
15
|
Zhang Y, Gao X, Wang C, Zheng Z, Wang L, Liu J. One-pot stereoselective synthesis of chiral 1, 3-oxathiolane by Trichosporon laibachii lipase: Optimization by response surface methodology integrated a desirability function approach. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.07.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
16
|
Sugiyama K, Oki Y, Kawanishi S, Kato K, Ikawa T, Egi M, Akai S. Spatial effects of oxovanadium-immobilized mesoporous silica on racemization of alcohols and application in lipase-catalyzed dynamic kinetic resolution. Catal Sci Technol 2016. [DOI: 10.1039/c6cy00257a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The nano-scale pores of mesoporous silica and their polar environment accelerate the racemization to make the lipase/oxovanadium combo-catalysed DKR applicable to a wider range of alcohols.
Collapse
Affiliation(s)
- Koji Sugiyama
- Graduate School of Pharmaceutical Sciences
- Osaka University
- Suita
- Japan
| | - Yasuhiro Oki
- Graduate School of Pharmaceutical Sciences
- Osaka University
- Suita
- Japan
| | - Shinji Kawanishi
- Graduate School of Pharmaceutical Sciences
- Osaka University
- Suita
- Japan
| | - Katsuya Kato
- National Institute of Advanced Industrial Science and Technology (AIST)
- Nagoya
- Japan
| | - Takashi Ikawa
- Graduate School of Pharmaceutical Sciences
- Osaka University
- Suita
- Japan
| | - Masahiro Egi
- School of Pharmaceutical Sciences
- University of Shizuoka
- Shizuoka
- Japan
| | - Shuji Akai
- Graduate School of Pharmaceutical Sciences
- Osaka University
- Suita
- Japan
| |
Collapse
|
17
|
Matsubara Y, Kadotani S, Nishihara T, Hikino Y, Fukaya Y, Nokami T, Itoh T. Phosphonium alkyl PEG sulfate ionic liquids as coating materials for activation ofBurkholderia cepacialipase. Biotechnol J 2015; 10:1944-51. [DOI: 10.1002/biot.201500413] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/23/2015] [Accepted: 10/19/2015] [Indexed: 01/17/2023]
|
18
|
Lozano P, Bernal JM, Nieto S, Gomez C, Garcia-Verdugo E, Luis SV. Active biopolymers in green non-conventional media: a sustainable tool for developing clean chemical processes. Chem Commun (Camb) 2015; 51:17361-74. [DOI: 10.1039/c5cc07600e] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
By understanding structure–function relationships of active biopolymers (e.g. enzymes and nucleic acids) in green non-conventional media, sustainable chemical processes may be developed.
Collapse
Affiliation(s)
- Pedro Lozano
- Departamento de Bioquímica y Biología Molecular “B” e Inmunología
- Facultad de Química
- Campus de Excelencia Internacional Mare Nostrum
- Universidad de Murcia
- Murcia
| | - Juana M. Bernal
- Departamento de Bioquímica y Biología Molecular “B” e Inmunología
- Facultad de Química
- Campus de Excelencia Internacional Mare Nostrum
- Universidad de Murcia
- Murcia
| | - Susana Nieto
- Departamento de Bioquímica y Biología Molecular “B” e Inmunología
- Facultad de Química
- Campus de Excelencia Internacional Mare Nostrum
- Universidad de Murcia
- Murcia
| | - Celia Gomez
- Departamento de Bioquímica y Biología Molecular “B” e Inmunología
- Facultad de Química
- Campus de Excelencia Internacional Mare Nostrum
- Universidad de Murcia
- Murcia
| | | | - Santiago V. Luis
- Departamento de Química Inorgánica y Orgánica
- Universidad Jaume I
- Castellón
- Spain
| |
Collapse
|