1
|
Duan C, Zhou Y, Meng M, Huang H, Ding H, Zhang Q, Huang R, Yan M. Research on the elimination of low-concentration formaldehyde by Ag loaded onto Mn/CeO 2 catalyst at room temperature. Phys Chem Chem Phys 2023; 25:24495-24507. [PMID: 37655797 DOI: 10.1039/d3cp01612a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Formaldehyde (HCHO) is one of the major air pollutants, and its effective removal at room temperature has proven to be a great challenge. In this study, an Ag/Mn/CeO2 catalyst for the catalytic oxidation of low-concentration HCHO at room temperature was prepared by a hydrothermal-calcination method. The removal performance of the Ag/Mn/CeO2 catalyst for HCHO was systematically studied, and its surface chemical properties and microstructure were analyzed. The incorporation of Ag did not change the mesoporous structure of the Mn/CeO2 catalyst but reduced the pore size and specific surface area. The Ag species included metallic Ag as the main component and part of Ag+. The well-dispersed Ag species on the catalyst provided sufficient active sites for the catalytic oxidation of HCHO. The more the Ag active sites, the more the lattice defects and oxygen vacancies generated from the interaction of Ag with Mn/CeO2. Precisely because of this, the Ag/Mn/CeO2 catalyst exhibited high catalytic activity for HCHO at room temperature with a removal efficiency of 96.76% within 22 h, which is 22.91% higher than that of the Mn/CeO2 catalyst. Moreover, the Ag/Mn/CeO2 catalyst showed good cycling stability and the removal efficiency reached 85.77% after five cycles. Therefore, the as-prepared catalyst is an effective and sustainable material that can be used to remove HCHO from actual indoor polluted air. This paper provides ideas for the research and development of efficient catalysts.
Collapse
Affiliation(s)
- Chaomin Duan
- College of Environment and Resources, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Yanlin Zhou
- College of Environment and Resources, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Mianwu Meng
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education, Guilin, Guangxi 541004, China.
- College of Environment and Resources, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Huang Huang
- Guilin Huayue Entech Limited Company, Guilin, Guangxi 541805, China.
| | - Hua Ding
- College of Environment and Resources, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Qi Zhang
- College of Environment and Resources, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Renyuan Huang
- College of Environment and Resources, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Mengjuan Yan
- College of Environment and Resources, Guangxi Normal University, Guilin, Guangxi 541004, China
| |
Collapse
|
2
|
Liu X, Liu Y, Wu Y, Dong S, Qi G, Chen C, Xi S, Luo P, Dai Y, Han Y, Zhou Y, Guo Y, Wang J. Room temperature removal of high-space-velocity formaldehyde boosted by fixing Pt nanoparticles into Beta zeolite framework. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131848. [PMID: 37336111 DOI: 10.1016/j.jhazmat.2023.131848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/29/2023] [Accepted: 06/12/2023] [Indexed: 06/21/2023]
Abstract
Catalytic oxidation of volatile organic compounds like formaldehyde (HCHO) over the noble metals catalysts at room temperature is among the most promising strategies to control indoor pollution but remains one challenge to maximize the efficiency of noble metal species. Herein, we demonstrated the straightforward encapsulation of highly dispersive Pt nanoparticles (NPs) within BEA zeolite and adjacent with the surface hydroxyl groups to reach the synergistic HCHO oxidation at 25 °C. High efficiency and long-term stability was reached under large space velocity (∼100% conversion at 180,000 mL (gcat × h)-1 and >95% at 360,000 mL (gcat × h)-1), affording rapid elimination rate of 129.4 μmol (gPt × s)-1 and large turnover frequency of 2.5 × 10-2 s-1. This is the first synergy example derived from the hydroxyl groups and confined noble metals within zeolites that accelerated the rate-determining step, the formate transformation, in the HCHO elimination.
Collapse
Affiliation(s)
- Xiaoling Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yitong Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yue Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Shan Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Guoqin Qi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Cailing Chen
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Shibo Xi
- Institute of Sustainability for Chemicals, Energy and Environment, A⁎STAR (Agency for Science, Technology and Research), 1 Pesek Road, Jurong Island, Singapore 627833, Singapore
| | - Pan Luo
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yihu Dai
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yu Han
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Yu Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Yu Guo
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Jun Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
3
|
Liu X, Wang C, Chen Y, Qin Q, Li Y, He H. Formaldehyde oxidation on Pd/USY catalysts at room temperature: The effect of acid pretreatment on supports. J Environ Sci (China) 2023; 125:811-822. [PMID: 36375962 DOI: 10.1016/j.jes.2022.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 06/16/2023]
Abstract
The complete catalytic oxidation of formaldehyde (HCHO) to CO2 and H2O at room temperature is a green route for indoor HCHO removal. Zeolite is an excellent carrier material for HCHO oxidation due to its large surface area, intricate pores and high adsorption capacity. However, the zeolite-supported noble metal catalysts have currently shown relatively low activity especially at room temperature. In this work, we present a facile acid treatment strategy for zeolite catalysts to improve the hydroxyl concentration and further enhance their catalytic activity for HCHO oxidation. Activity tests illustrated that HCHO could be completely oxidized to CO2 and H2O at a nearly 100% conversion rate with a weight hourly space velocity (WHSV) of 150,000 mL/(g∙hr) at 25°C, when the support of Pd/USY catalysts was pretreated by hydrochloric acid with a concentration of 0.20 mol/L. The characterization results revealed that the active hydroxyl groups originated from the dealumination in the acid treatment play a key role in the HCHO oxidation reaction. The deduced reaction mechanism suggests that bridging hydroxyl groups may oxidize HCHO to dioxymethylene (DOM) species and terminal hydroxyl groups are responsible for the transformation of DOM groups to formate (HCOO) species.
Collapse
Affiliation(s)
- Xiaofeng Liu
- Center for Excellence in Regional Atmospheric Environment, Key Laboratory of Urban Pollutant Conversion, Chinese Academy of Sciences, Institute of Urban Environment, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunying Wang
- Center for Excellence in Regional Atmospheric Environment, Key Laboratory of Urban Pollutant Conversion, Chinese Academy of Sciences, Institute of Urban Environment, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Chinese Academy of Sciences, Ningbo Urban Environment Observation and Research Station-NUEORS, Ningbo 315800, China
| | - Yumin Chen
- Center for Excellence in Regional Atmospheric Environment, Key Laboratory of Urban Pollutant Conversion, Chinese Academy of Sciences, Institute of Urban Environment, Xiamen 361021, China; Xiamen Key Laboratory of Materials for Gaseous Pollutant Control, Chinese Academy of Sciences, Institute of Urban Environment, Xiamen 361021, China.
| | - Qi Qin
- Center for Excellence in Regional Atmospheric Environment, Key Laboratory of Urban Pollutant Conversion, Chinese Academy of Sciences, Institute of Urban Environment, Xiamen 361021, China
| | - Yaobin Li
- Center for Excellence in Regional Atmospheric Environment, Key Laboratory of Urban Pollutant Conversion, Chinese Academy of Sciences, Institute of Urban Environment, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Chinese Academy of Sciences, Ningbo Urban Environment Observation and Research Station-NUEORS, Ningbo 315800, China; Xiamen Key Laboratory of Materials for Gaseous Pollutant Control, Chinese Academy of Sciences, Institute of Urban Environment, Xiamen 361021, China.
| | - Hong He
- Center for Excellence in Regional Atmospheric Environment, Key Laboratory of Urban Pollutant Conversion, Chinese Academy of Sciences, Institute of Urban Environment, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Chinese Academy of Sciences, Ningbo Urban Environment Observation and Research Station-NUEORS, Ningbo 315800, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
4
|
Jang Y, Lee YH, Eom H, Lee SM, Kim SS. Effect of preparation method of noble metal supported catalyts on formaldehyde oxidation at room temperature: Gas or liquid phase reduction. J Environ Sci (China) 2022; 122:201-216. [PMID: 35717085 DOI: 10.1016/j.jes.2022.01.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 06/15/2023]
Abstract
Formaldehyde (HCHO) is toxic to the human body and is one of the main threats to the indoor air quality (IAQ). As such, the removal of HCHO is imperative to improving the IAQ, whereby the most useful method to effectively remove HCHO at room temperature is catalytic oxidation. This review discusses catalysts for HCHO room-temperature oxidation, which are categorized according to their preparation methods, i.e., gas-phase reduction and liquid-phase reduction methods. The HCHO oxidation performances, structural features, and reaction mechanisms of the different catalysts are discussed, and directions for future research on catalytic oxidation are reviewed.
Collapse
Affiliation(s)
- Younghee Jang
- Department of Environmental Energy Envineering, Graduate School of kyonggi University, Gyeonggi-do 16227, Korea
| | - Ye Hwan Lee
- Department of Environmental Energy Envineering, Graduate School of kyonggi University, Gyeonggi-do 16227, Korea
| | - Hanki Eom
- Department of Environmental Energy Engineeing, Kyonggi University, Gyonggi-do 16227, Korea
| | - Sang Moon Lee
- Department of Environmental Energy Engineeing, Kyonggi University, Gyonggi-do 16227, Korea
| | - Sung Su Kim
- Department of Environmental Energy Engineeing, Kyonggi University, Gyonggi-do 16227, Korea.
| |
Collapse
|
5
|
NiCo-LDH@MnO2 nanocages as advanced catalysts for efficient formaldehyde elimination. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Wei T, Zhao X, Li L, Wang L, Lv S, Gao L, Yuan G, Li L. Enhanced Formaldehyde Oxidation Performance of the Mesoporous TiO 2(B)-Supported Pt Catalyst: The Role of Hydroxyls. ACS OMEGA 2022; 7:25491-25501. [PMID: 35910119 PMCID: PMC9330097 DOI: 10.1021/acsomega.2c02490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
As one of the crystal phases of titania, TiO2(B) was first utilized as a catalyst carrier for the oxidation of formaldehyde (HCHO). The mesoporous TiO2(B) loaded with Pt nanoparticles enhanced the HCHO oxidation reaction whose reaction rate was 4.5-8.4 times those of other crystalline TiO2-supported Pt catalysts. Simultaneously, Pt/TiO2(B) exhibited long-term stable HCHO oxidation performance. The structural characterization results showed that in comparison with Pt/anatase, Pt/TiO2(B) had more abundant hydroxyls, facilitating increasing the content of oxygen species. Studies on the role of hydroxyls in HCHO oxidation of Pt/TiO2(B) illustrated that synergistic involvement of terminally bound hydroxyls and bridging hydroxyls in HCHO oxidation accelerated the transformation from HCHO to formate via dioxymethylene. Moreover, hydroxyls could avoid the accumulation of excessive formate on Pt/TiO2(B) and promote the rapid oxidation of CO. Accordingly, the hydroxyl groups could accelerate each substep of formaldehyde oxidation, which enabled Pt/TiO2(B) to exhibit excellent formaldehyde oxidation performance.
Collapse
Affiliation(s)
- Tongtong Wei
- Jiangsu
Co-Innovation Center of Efficient Processing and Utilization of Forest
Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Xuejuan Zhao
- School
of Materials Science and Engineering, Nanjing
Institute of Technology, Nanjing 211167, P. R. China
| | - Long Li
- Jiangsu
Co-Innovation Center of Efficient Processing and Utilization of Forest
Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Lei Wang
- Jiangsu
Co-Innovation Center of Efficient Processing and Utilization of Forest
Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Shenjie Lv
- Jiangsu
Co-Innovation Center of Efficient Processing and Utilization of Forest
Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Lei Gao
- Jiangsu
Architectural Decoration Integrated Installation Engineering Technology
Research Center, Nanjing Guohao Decoration
& Installation Engineering Co., Ltd., Nanjing, 210012, P. R. China
| | - Gaosong Yuan
- Jiangsu
Architectural Decoration Integrated Installation Engineering Technology
Research Center, Nanjing Guohao Decoration
& Installation Engineering Co., Ltd., Nanjing, 210012, P. R. China
| | - Licheng Li
- Jiangsu
Co-Innovation Center of Efficient Processing and Utilization of Forest
Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| |
Collapse
|
7
|
Abstract
The development of efficient Pt-supported zeolite catalysts with tunable micro/mesopore structures for the removal of volatile organic compounds (VOCs) presents a major challenge. Herein, hierarchical Pt/Y zeolites with tunable mesopores are fabricated by varying the etching time before the surfactant-templated crystal rearrangement method and used as catalyst supports for VOC oxidation. The hierarchical Pt/Y zeolites provided an excellent environment for Pt nanoparticle loading with abundant accessible acidic sites. The catalytic performance of the obtained hierarchical Pt/Y zeolites is analyzed using toluene oxidation, with the modified zeolites exhibiting improved catalytic activities. The hierarchical Pt/Y zeolites exhibited higher catalytic toluene oxidation activities than non-hierarchical Pt/Y zeolites. Pt/Y-6h demonstrated the highest catalytic toluene oxidation activity of the prepared catalysts, with a T90 of 149 °C, reaction rate of 1.15 × 10−7 mol gcat−1 s−1, turnover frequency of 1.20 × 10−2 s−1, and an apparent activation energy of 66.5 kJ mol−1 at 60,000 mL g−1 h−1 at a toluene concentration of 1000 ppm. This study will facilitate the fine-tuning of hierarchically porous materials to improve material properties and achieve higher catalytic performance toward VOC oxidation.
Collapse
|
8
|
Yan Z, Huang G, Wang G, Xiang M, Han X, Xu Z. Fluorescent lamp promoted formaldehyde removal over CeO2 catalysts at ambient temperature. J RARE EARTH 2022. [DOI: 10.1016/j.jre.2021.06.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
9
|
Zhang J, Xu X, Zhao S, Meng X, Xiao FS. Recent advances of zeolites in catalytic oxidations of volatile organic compounds. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
10
|
Liu X, Wang C, Li Y, He H. Acid pretreatment of support promotes Pd/SiO 2 activity for formaldehyde oxidation at room temperature. Catal Sci Technol 2022. [DOI: 10.1039/d2cy01410f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydroxyl groups on SiO2 produced by acid pretreatment favored the anchoring of Pd particles and increased their dispersion, which induced more oxygen vacancies on the surface of catalysts and further enhanced H2O activation.
Collapse
Affiliation(s)
- Xiaofeng Liu
- Center for Excellence in Regional Atmospheric Environment, Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunying Wang
- Center for Excellence in Regional Atmospheric Environment, Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station-NUEORS, Chinese Academy of Sciences, Ningbo 315800, China
| | - Yaobin Li
- Center for Excellence in Regional Atmospheric Environment, Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station-NUEORS, Chinese Academy of Sciences, Ningbo 315800, China
- Xiamen Key Laboratory of Materials for Gaseous Pollutant Control, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Hong He
- Center for Excellence in Regional Atmospheric Environment, Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station-NUEORS, Chinese Academy of Sciences, Ningbo 315800, China
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
11
|
Todorova T, Petrova P, Kalvachev Y. Catalytic Oxidation of CO and Benzene over Metal Nanoparticles Loaded on Hierarchical MFI Zeolite. Molecules 2021; 26:molecules26195893. [PMID: 34641437 PMCID: PMC8510457 DOI: 10.3390/molecules26195893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/08/2021] [Accepted: 09/26/2021] [Indexed: 11/24/2022] Open
Abstract
In order to obtain highly active catalytic materials for oxidation of carbon monoxide and volatile organic compounds (VOCs), monometallic platinum, copper, and palladium catalysts were prepared by using of two types of ZSM-5 zeolite as supports—parent ZSM-5 and the same one treated by HF and NH4F buffer solution. The catalyst samples, obtained by loading of platinum, palladium, and copper on ZSM-5 zeolite treated using HF and NH4F buffer solution, were more active in the reaction of CO and benzene oxidation compared with catalyst samples containing untreated zeolite. The presence of secondary mesoporosity played a positive role in increasing the catalytic activity due to improved reactant diffusion. The only exception was the copper catalysts in the reaction of CO oxidation, in which case the catalyst, based on untreated ZSM-5 zeolite, was more active. In this specific case, the key role is played by the oxidative state of copper species loaded on the ZSM-5 zeolites.
Collapse
Affiliation(s)
- Totka Todorova
- Correspondence: (T.T.); (Y.K.); Tel.: +359-2979-3587 (T.T.); +359-2979-3989 (Y.K.)
| | | | - Yuri Kalvachev
- Correspondence: (T.T.); (Y.K.); Tel.: +359-2979-3587 (T.T.); +359-2979-3989 (Y.K.)
| |
Collapse
|
12
|
Wang J, Guo X, Shi Y, Zhou R. Synergistic effect of Pt nanoparticles and micro-mesoporous ZSM-5 in VOCs low-temperature removal. J Environ Sci (China) 2021; 107:87-97. [PMID: 34412790 DOI: 10.1016/j.jes.2021.01.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 06/13/2023]
Abstract
Micro-mesoporous ZSM-5 zeolites were obtained by the post-treatment of tetrahydroxy ammonium hydroxide (TPAOH) solution with different concentration. The hierarchical pore structure formed during the desilication process facilitates the dispersion of Pt nanoparticles and Pt/ZSM-5 catalysts exhibit rather high catalytic activity for the deep oxidation of various VOCs at low temperature. The catalyst treated with TPAOH of 0.1 mol/L (Pt/ZSM-5(0.1)) shows the lowest degradation temperature (T90%) of 128 and 142°C, respectively for benzene and n-hexane. Compared with the untreated Pt/ZSM-5 catalyst, the abundant mesopores, small Pt particle size and finely dispersed Pt contribute to the superior catalytic activity and stability of the Pt/ZSM-5 catalysts for VOCs removal. More importantly, the existence of H2O in the feed gases hardly affected the activity of Pt/ZSM-5(0.1) catalyst at the low reaction temperature of 128°C, which is very important for VOCs low-temperature removal in the future practical applications.
Collapse
Affiliation(s)
- Jialu Wang
- Institute of Catalysis, Zhejiang University, Hangzhou 310028, China
| | - Xiaolin Guo
- College of Materials and Chemistry, China Jiliang University, Hangzhou 310018, China
| | - Yijun Shi
- Institute of Catalysis, Zhejiang University, Hangzhou 310028, China
| | - Renxian Zhou
- Institute of Catalysis, Zhejiang University, Hangzhou 310028, China.
| |
Collapse
|
13
|
Ag@ Fe-TiO2 catalysts for catalytic oxidation of formaldehyde indoor: a further improvement of Fe-TiO2. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04442-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
14
|
Wang C, Li Y, Zheng L, Zhang C, Wang Y, Shan W, Liu F, He H. A Nonoxide Catalyst System Study: Alkali Metal-Promoted Pt/AC Catalyst for Formaldehyde Oxidation at Ambient Temperature. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03196] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chunying Wang
- Center for Excellence in Regional Atmospheric Environment, Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaobin Li
- Center for Excellence in Regional Atmospheric Environment, Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo 315800, China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Changbin Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yin Wang
- Center for Excellence in Regional Atmospheric Environment, Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Wenpo Shan
- Center for Excellence in Regional Atmospheric Environment, Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo 315800, China
| | - Fudong Liu
- Department of Civil, Environmental, and Construction Engineering (CECE), Catalysis Cluster for Renewable Energy and Chemical Transformations (REACT), NanoScience Technology Center (NSTC), University of Central Florida, Orlando, Florida 32816, United States
| | - Hong He
- Center for Excellence in Regional Atmospheric Environment, Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo 315800, China
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
15
|
Effect of the variation of metal and cerium loadings on CeO2x–TiO2(100−x) supports in the complete catalytic oxidation of formaldehyde. RESEARCH ON CHEMICAL INTERMEDIATES 2020. [DOI: 10.1007/s11164-020-04299-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Effective catalytic abatement of indoor formaldehyde at room temperature over TS-1 supported platinum with relatively low content. Catal Today 2020. [DOI: 10.1016/j.cattod.2019.06.053] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
17
|
Wang X, Rui Z, Ji H. DFT study of formaldehyde oxidation on silver cluster by active oxygen and hydroxyl groups: Mechanism comparison and synergistic effect. Catal Today 2020. [DOI: 10.1016/j.cattod.2018.06.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
18
|
Ma L, Liu C, Guan Q, Li W. Relationship between Pt particle size and catalyst activity for catalytic oxidation of ultrahigh‐concentration formaldehyde. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5217] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Luyao Ma
- College of Chemistry, State Key Laboratory of Elemento‐Organic Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)Nankai University Tianjin 300071 China
| | - Chenxin Liu
- College of Chemistry, State Key Laboratory of Elemento‐Organic Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)Nankai University Tianjin 300071 China
| | - Qingxin Guan
- College of Chemistry, State Key Laboratory of Elemento‐Organic Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)Nankai University Tianjin 300071 China
| | - Wei Li
- College of Chemistry, State Key Laboratory of Elemento‐Organic Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)Nankai University Tianjin 300071 China
| |
Collapse
|
19
|
He C, Cheng J, Zhang X, Douthwaite M, Pattisson S, Hao Z. Recent Advances in the Catalytic Oxidation of Volatile Organic Compounds: A Review Based on Pollutant Sorts and Sources. Chem Rev 2019; 119:4471-4568. [DOI: 10.1021/acs.chemrev.8b00408] [Citation(s) in RCA: 708] [Impact Index Per Article: 118.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chi He
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 101408, P.R. China
- Department of Environmental Science and Engineering, State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, P.R. China
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K
| | - Jie Cheng
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 101408, P.R. China
| | - Xin Zhang
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 101408, P.R. China
| | - Mark Douthwaite
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K
| | - Samuel Pattisson
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K
| | - Zhengping Hao
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 101408, P.R. China
| |
Collapse
|
20
|
Wang X, Ying J, Mai Y, Zhang J, Chen J, Wen M, Yu L. MOF-derived metal oxide composite Mn2Co1Ox/CN for efficient formaldehyde oxidation at low temperature. Catal Sci Technol 2019. [DOI: 10.1039/c9cy01104h] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A novel MOF-derived MnCoOx nanoparticles embedded in porous N-doped carbon catalyst exhibits excellent catalytic activity for the low-temperature oxidation of formaldehyde.
Collapse
Affiliation(s)
- Xi Wang
- Guangdong Provincial Key Laboratory of Industrial Surfactant
- Guangdong Research Institute of Petrochemical and Fine Chemical Engineering
- Guangdong Academy of Sciences
- Guangzhou 510665
- China
| | - Jiawei Ying
- Guangdong Provincial Key Laboratory of Industrial Surfactant
- Guangdong Research Institute of Petrochemical and Fine Chemical Engineering
- Guangdong Academy of Sciences
- Guangzhou 510665
- China
| | - Yuliang Mai
- Guangdong Provincial Key Laboratory of Industrial Surfactant
- Guangdong Research Institute of Petrochemical and Fine Chemical Engineering
- Guangdong Academy of Sciences
- Guangzhou 510665
- China
| | - Junjie Zhang
- Guangdong Provincial Key Laboratory of Industrial Surfactant
- Guangdong Research Institute of Petrochemical and Fine Chemical Engineering
- Guangdong Academy of Sciences
- Guangzhou 510665
- China
| | - Jiazhi Chen
- Guangdong Provincial Key Laboratory of Industrial Surfactant
- Guangdong Research Institute of Petrochemical and Fine Chemical Engineering
- Guangdong Academy of Sciences
- Guangzhou 510665
- China
| | - Mingtong Wen
- Guangdong Provincial Key Laboratory of Industrial Surfactant
- Guangdong Research Institute of Petrochemical and Fine Chemical Engineering
- Guangdong Academy of Sciences
- Guangzhou 510665
- China
| | - Lin Yu
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou 510006
- China
| |
Collapse
|
21
|
Ding J, Chen J, Rui Z, Liu Y, Lv P, Liu X, Li H, Ji H. Synchronous pore structure and surface hydroxyl groups amelioration as an efficient route for promoting HCHO oxidation over Pt/ZSM-5. Catal Today 2018. [DOI: 10.1016/j.cattod.2018.01.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
22
|
Study of Complete Oxidation of Formaldehyde Over MnOx–CeO2 Mixed Oxide Catalysts at Ambient Temperature. Catal Letters 2018. [DOI: 10.1007/s10562-018-2479-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Huo Y, Wang X, Rui Z, Yang X, Ji H. Identification of the Nearby Hydroxyls’ Role in Promoting HCHO Oxidation over a Pt Catalyst. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b01547] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ying Huo
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, PR China
- Fine Chemical Research Institute, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Xuyu Wang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, PR China
- Fine Chemical Research Institute, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Zebao Rui
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, PR China
- Fine Chemical Research Institute, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, PR China
| | | | - Hongbing Ji
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, PR China
- Fine Chemical Research Institute, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, PR China
| |
Collapse
|
24
|
Lu S, Chen C, Wang X, Wei S, Zhu Q, Huang F, Li K, Zhou X, He L, Liu Y, Pang F. Efficient Catalytic Removal of Formaldehyde over Ag/Co3O4–CeO2 Prepared by Different Method. CATALYSIS SURVEYS FROM ASIA 2018. [DOI: 10.1007/s10563-018-9240-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Synergetic effect of oxygen vacancy and Pd site on the interaction between Pd/Anatase TiO 2 (101) and formaldehyde: A density functional theory study. Catal Today 2017. [DOI: 10.1016/j.cattod.2017.06.037] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
26
|
Chen BB, Zhu XB, Wang YD, Yu LM, Lu JQ, Shi C. Nano-sized gold particles dispersed on HZSM-5 and SiO 2 substrates for catalytic oxidation of HCHO. Catal Today 2017. [DOI: 10.1016/j.cattod.2016.06.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Zhu X, Yu J, Jiang C, Cheng B. Catalytic decomposition and mechanism of formaldehyde over Pt–Al2O3 molecular sieves at room temperature. Phys Chem Chem Phys 2017; 19:6957-6963. [DOI: 10.1039/c6cp08223h] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Al2O3 molecular sieve supported Pt was prepared for catalytic formaldehyde oxidation at room temperature.
Collapse
Affiliation(s)
- Xiaofeng Zhu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan
- China
| | - Jiaguo Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan
- China
- Department of Physics
| | - Chuanjia Jiang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan
- China
| | - Bei Cheng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan
- China
| |
Collapse
|
28
|
Enhanced room-temperature HCHO decomposition activity of highly-dispersed Pt/Al2O3 hierarchical microspheres with exposed {110} facets. J IND ENG CHEM 2017. [DOI: 10.1016/j.jiec.2016.09.023] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
29
|
Chen H, Tang M, Rui Z, Ji H. MnO2 Promoted TiO2 Nanotube Array Supported Pt Catalyst for Formaldehyde Oxidation with Enhanced Efficiency. Ind Eng Chem Res 2015. [DOI: 10.1021/acs.iecr.5b01970] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Huayao Chen
- Department of Chemical Engineering, School of Chemistry & Chemical Engineering, and The Key Lab of Low-Carbon Chem & Energy Conservation of Guangdong Province, Sun Yat-Sen University, Guangzhou 510275, P.R.China
| | - Minni Tang
- Department of Chemical Engineering, School of Chemistry & Chemical Engineering, and The Key Lab of Low-Carbon Chem & Energy Conservation of Guangdong Province, Sun Yat-Sen University, Guangzhou 510275, P.R.China
- R&D Center of Waste-Gas Cleaning & Control, Huizhou Research Institute of Sun Yat-Sen University, Huizhou 516081, P.R. China
| | - Zebao Rui
- Department of Chemical Engineering, School of Chemistry & Chemical Engineering, and The Key Lab of Low-Carbon Chem & Energy Conservation of Guangdong Province, Sun Yat-Sen University, Guangzhou 510275, P.R.China
- R&D Center of Waste-Gas Cleaning & Control, Huizhou Research Institute of Sun Yat-Sen University, Huizhou 516081, P.R. China
| | - Hongbing Ji
- Department of Chemical Engineering, School of Chemistry & Chemical Engineering, and The Key Lab of Low-Carbon Chem & Energy Conservation of Guangdong Province, Sun Yat-Sen University, Guangzhou 510275, P.R.China
- R&D Center of Waste-Gas Cleaning & Control, Huizhou Research Institute of Sun Yat-Sen University, Huizhou 516081, P.R. China
| |
Collapse
|