1
|
Huang J, Li H, Saravanamurugan S, Su Y, Yang S, Riisager A. Interfacial Thermoconvection and Atomic Relay Catalysis Enable Equilibrium Shifting and Rapid Glucose-to-Fructose Isomerization. Angew Chem Int Ed Engl 2024:e202411544. [PMID: 39330915 DOI: 10.1002/anie.202411544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 09/28/2024]
Abstract
The aqueous glucose-to-fructose isomerization is controlled by thermodynamics to an equilibrium limit of ~50 % fructose yield. However, here we report an in situ fructose removal strategy enabled by an interfacial local photothermal effect in combination with relay catalysis of geminal and isolated potassium single atoms (K SAs) on graphene-type carbon (Ksg/GT) to effectively bypass the equilibrium limit and markedly speed up glucose-to-fructose isomerization. At 25 °C, an unprecedented fructose yield of 68.2 % was obtained over Ksg/GT in an aqueous solution without any additives under 30-min solar-like irradiation. Mechanistic studies expounded that the interfacial thermoconvection caused by the local photothermal effect of the graphene-type carbon and preferable glucose adsorption on single-atom K could facilitate the release of in situ formed fructose. The geminal K SAs were prone to form a stable metal-glucose complex via bidentate coordination, and could significantly reduce the C-H bond electron density by light-driven electron transfer toward K. This facilitated the hydride shift rate-determining step and expedited glucose isomerization. In addition, isolated K SAs favored the subsequent protonation and ring-closure process to furnish fructose. The integration of the interfacial thermoconvection-enhanced in situ removal protocol and tailored atomic catalysis opens a prospective avenue for boosting equilibrium-limited reactions under mild conditions.
Collapse
Affiliation(s)
- Jinshu Huang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, 550025, Guiyang, Guizhou, China
| | - Hu Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, 550025, Guiyang, Guizhou, China
| | - Shunmugavel Saravanamurugan
- Laboratory of Bioproduct Chemistry, Centre of Innovative and Applied Bioprocessing (CIAB), 140306, Mohali, Punjab, India
| | - Yaqiong Su
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, 710049, Xi'an, China
| | - Song Yang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, 550025, Guiyang, Guizhou, China
| | - Anders Riisager
- Centre for Catalysis and Sustainable Chemistry, Department of Chemistry, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark
| |
Collapse
|
2
|
Perez GAP, Pandey S, Dumont MJ. Sulfosuccinic acid-based metal-center catalysts for the synthesis of HMF from carbohydrates. Catal Today 2023. [DOI: 10.1016/j.cattod.2023.114127] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
3
|
Mahala S, Arumugam SM, Kumar S, Devi B, Elumalai S. Tuning of MgO's base characteristics by blending it with amphoteric ZnO facilitating the selective glucose isomerization to fructose for bioenergy development. NANOSCALE ADVANCES 2023; 5:2470-2486. [PMID: 37143812 PMCID: PMC10153107 DOI: 10.1039/d3na00097d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/23/2023] [Indexed: 05/06/2023]
Abstract
Fructose serves as an important intermediate in the preparation of liquid fuel compounds. Herein, we report its selective production via a chemical catalysis method over ZnO/MgO nanocomposite. The blending of an amphoteric ZnO with MgO reduced the latter's unfavorable moderate/strong basic sites that can influence the side reactions in the sugar interconversion, reducing fructose productivity. Of all the ZnO/MgO combinations, a 1 : 1 ratio of ZnO and MgO showed a 20% reduction in moderate/strong basic sites in MgO with ∼2-2.5 times increase in weak basic sites (overall), which is favorable for the reaction. The analytical characterizations affirmed that MgO settles on the surface of ZnO by blocking the pores. The amphoteric ZnO undertakes the neutralization of the strong basic sites and improves the weak basic sites (cumulative) by the Zn-MgO alloy formation. Therefore, the composite afforded as high as 36% fructose yield and 90% selectivity at 90 °C; especially, the improved selectivity can be accounted for by the effect of both basic and acidic sites. The favorable action of acidic sites in controlling the unwanted side reactions was maximum when an aqueous medium contained 1/5th methanol. However, ZnO's presence regulated the glucose's degradation rate by up to 40% compared to the kinetics of pristine MgO. From the isotopic labelling experiments, the proton transfer pathway (or LdB-AvE mechanism by the formation of 1,2-enediolate) is dominant in the glucose-to-fructose transformation. The composite exhibited a long-lasting ability based on the good recycling efficiency of up to 5 cycles. The insights into the fine-tuning of the physicochemical characteristics of widely available metal oxides would help develop a robust catalyst for sustainable fructose production for biofuel production (via a cascade approach).
Collapse
Affiliation(s)
- Sangeeta Mahala
- Chemical Engineering Division, DBT-Center of Innovative and Applied Bioprocessing Mohali Punjab 140306 India +91-172-5221-444
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali Punjab 140306 India
| | - Senthil M Arumugam
- Chemical Engineering Division, DBT-Center of Innovative and Applied Bioprocessing Mohali Punjab 140306 India +91-172-5221-444
| | - Sandeep Kumar
- Chemical Engineering Division, DBT-Center of Innovative and Applied Bioprocessing Mohali Punjab 140306 India +91-172-5221-444
| | - Bhawana Devi
- Chemical Engineering Division, DBT-Center of Innovative and Applied Bioprocessing Mohali Punjab 140306 India +91-172-5221-444
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali Punjab 140306 India
| | - Sasikumar Elumalai
- Chemical Engineering Division, DBT-Center of Innovative and Applied Bioprocessing Mohali Punjab 140306 India +91-172-5221-444
| |
Collapse
|
4
|
Delidovich I. Toward Understanding Base-Catalyzed Isomerization of Saccharides. ACS Catal 2023. [DOI: 10.1021/acscatal.2c04786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Irina Delidovich
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Getreidemarkt 9, A-1060 Vienna, Austria
| |
Collapse
|
5
|
Study of base-catalyzed isomerization of d-glucose with a focus on reaction kinetics. REACTION KINETICS MECHANISMS AND CATALYSIS 2022. [DOI: 10.1007/s11144-022-02277-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
AbstractWe explored the isomerization of d-glucose into d-fructose using the simplest possible base catalyst, aqueous NaOH, to maintain a constant pH value during the reaction. Under the applied mild conditions (T 50–90 °C, pH 9.5–11.5), yields of d-fructose of up to 31% were observed. Selectivity-conversion plots were not significantly influenced by variation of the temperature, pH value or substrate concentration. A reaction network for kinetic modelling includes d-glucose-d-fructose interconversion, co-production of d-mannose and d-allulose (also known as d-psicose) as well as decomposition paths after deprotonation of the hexoses. All four hexoses were employed as substrates in the isomerization. Thermodynamic ionization constants of the saccharides were measured by means of potentiometric titration. In the kinetic studies, pH-independent rate constants as well as activation energies were determined. The obtained kinetic and thermodynamic results as well as selectivity-conversion correlations present a useful benchmark for soluble and solid base catalysts.
Collapse
|
6
|
Kar AK, Srivastava R. Improving the Glucose to Fructose Isomerization via Epitaxial‐Grafting of Niobium in UIO‐66 framework. ChemCatChem 2022. [DOI: 10.1002/cctc.202200721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - Rajendra Srivastava
- Indian Institute of Technology Ropar Chemistry Nangal RoadRupnagar 140001 Rupnagar INDIA
| |
Collapse
|
7
|
Modelling and Optimisation of the Sol-Gel Conditions for Synthesis of Semi-Hexagonal Titania-Based Nano-Catalyst for Esterification Reaction. Catalysts 2022. [DOI: 10.3390/catal12020239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Design and fabrication of a catalyst with the highest activity can be achieved by optimising the synthesis conditions. In this study, the sol-gel synthesis conditions of citric acid concentration, gelling temperature, complex time, and calcination temperature were studied for the preparation of a novel semi-hexagonal calcium/titania-zirconia nano-catalyst used in the esterification reaction. After synthesis of around 24 samples at various conditions, their activity was tested in the esterification reaction and the results were analysed by multi-layer perceptron (MLP) and support vector machine (SVM) models. Both models predicted the actual data with high coefficients of determination, and indicated that the calcination temperature has the most influence on the activity of the prepared semi-hexagonal calcium/titania-zirconia nano-catalyst for the esterification reaction. Moreover, the genetic algorithm (GA) was utilised for optimising the preparation conditions based on the SVM model, due to its higher generalisation capability for prediction. The prepared nano-catalysts under the optimum conditions of 1.42 acid ratio, gelling temperature of 72 °C, complex time of 2.65 h, and calcination temperature of 487 °C showed good crystalline structure and metal–metal and metal–oxygen cation bonding. Finally, the fabricated catalyst had a high surface area (276.5 m2/g) with 3.5 nm pore diameter and almost uniform particle size (80–110 nm) distribution, leading to a high conversion of 97.6% in the esterification reaction, with good catalytic stability up to five times.
Collapse
|
8
|
Toussaint V, Delidovich I. Revealing the contributions of homogeneous and heterogeneous catalysis to isomerization of d-glucose into d-fructose in the presence of basic salts with low solubility. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00551d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Hydroxide anions are identified as catalytically active species for the isomerization of d-glucose to d-fructose over low soluble basic salts. The highest selectivity for d-fructose was obtained for catalysis by MgCO3.
Collapse
Affiliation(s)
- Valérie Toussaint
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
- Chair of Heterogeneous Catalysis and Chemical Technology, Institute for Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Irina Delidovich
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
- Chair of Heterogeneous Catalysis and Chemical Technology, Institute for Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| |
Collapse
|
9
|
Patria RD, Islam MK, Luo L, Leu SY, Varjani S, Xu Y, Wong JWC, Zhao J. Hydroxyapatite-based catalysts derived from food waste digestate for efficient glucose isomerization to fructose. GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2021.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
10
|
What are the catalytically active species for aqueous-phase isomerization of D-glucose into D-fructose in the presence of alkaline earth metal (hydr)oxides? J Catal 2021. [DOI: 10.1016/j.jcat.2021.08.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Wan J, Yang H, Fu L, Lin W, Hu Q, Xi F, Pan L, Li Y, Liu Y. The Cyclopentanone Self-condensation Over Calcined and Uncalcined TiO2–ZrO2 with Different Acidic Properties. Catal Letters 2021. [DOI: 10.1007/s10562-021-03655-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Shao Y, Ding Y, Dai J, Long Y, Hu ZT. Synthesis of 5-hydroxymethylfurfural from dehydration of biomass-derived glucose and fructose using supported metal catalysts. GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2021.01.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
13
|
Wang G, Tang N, Li Z, Zhu X, Zhang H, Zhang S, Shan H. Ethylbenzene dehydrogenation over Fe2O3 promoted TiO2-ZrO2 catalysts and corresponding conceptual fluidized bed process. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
Catalytic isomerization of d-glucose to d-fructose over BEA base zeotypes using different energy supply methods. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.03.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
15
|
Rabee AIM, Le SD, Nishimura S. MgO-ZrO 2 Mixed Oxides as Effective and Reusable Base Catalysts for Glucose Isomerization into Fructose in Aqueous Media. Chem Asian J 2020; 15:294-300. [PMID: 31808610 DOI: 10.1002/asia.201901534] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/05/2019] [Indexed: 11/07/2022]
Abstract
MgO-ZrO2 mixed oxides prepared with different Mg/Zr atomic ratios (denoted as xMZ: where x is the atomic ratio of Mg/Zr) are investigated for the glucose isomerization to fructose in water at 95 °C. The highest fructose yield of 33 % is obtained over 0.76MZ with ≈74 % selectivity after 3 h. To gain insight into the structure-activity relationships, the prepared catalysts are characterized by N2 physisorption, XRD, FTIR and CO2 -TPD. The results indicate that the addition of MgO drastically changed the textual property of ZrO2 and increased the number of basic sites. The kinetic studies revealed that the Lewis basic sites (cus-O2- ) generated from the highly dispersed MgO are the active sites responsible for the enhanced isomerization activity. Notably, MZ is reusable for four runs without a significant decrease in catalyst activity. Accordingly, this study provides an easily prepared, cheap, and recyclable catalyst that may hold great potential for fructose production.
Collapse
Affiliation(s)
- Abdallah I M Rabee
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, Asahidai, Nomi, Ishikawa, 923-1292, Japan.,Chemistry Department, Faculty of Science, Minia University, El-Minia, 61519, Egypt
| | - Son Dinh Le
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, Asahidai, Nomi, Ishikawa, 923-1292, Japan
| | - Shun Nishimura
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, Asahidai, Nomi, Ishikawa, 923-1292, Japan
| |
Collapse
|
16
|
Antunes MM, Fernandes A, Falcão D, Pillinger M, Ribeiro F, Valente AA. Optimized preparation and regeneration of MFI type base catalysts for d-glucose isomerization in water. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00188k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Eco-friendly solid bases possessing hierarchical MFI structure ford-glucose isomerization tod-fructose. Optimizing catalyst synthesis and composition for enhanced stability.
Collapse
Affiliation(s)
- Margarida M. Antunes
- CICECO – Aveiro Institute of Materials
- Department of Chemistry
- University of Aveiro
- Campus Universitário de Santiago
- 3810-193 Aveiro
| | - Auguste Fernandes
- Centro de Química Estrutural
- Instituto Superior Técnico
- Universidade de Lisboa
- 1049-001 Lisboa
- Portugal
| | - Diogo Falcão
- CICECO – Aveiro Institute of Materials
- Department of Chemistry
- University of Aveiro
- Campus Universitário de Santiago
- 3810-193 Aveiro
| | - Martyn Pillinger
- CICECO – Aveiro Institute of Materials
- Department of Chemistry
- University of Aveiro
- Campus Universitário de Santiago
- 3810-193 Aveiro
| | - Filipa Ribeiro
- Centro de Química Estrutural
- Instituto Superior Técnico
- Universidade de Lisboa
- 1049-001 Lisboa
- Portugal
| | - Anabela A. Valente
- CICECO – Aveiro Institute of Materials
- Department of Chemistry
- University of Aveiro
- Campus Universitário de Santiago
- 3810-193 Aveiro
| |
Collapse
|
17
|
Ammonia-treated metal oxides as base catalysts for selective isomerization of glucose in water. MOLECULAR CATALYSIS 2019. [DOI: 10.1016/j.mcat.2019.110479] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Akizuki M, Nakai Y, Fujii T, Oshima Y. Kinetic Analysis of a Solid Base-Catalyzed Reaction in Sub- and Supercritical Water Using Aldol Condensation with Mg(OH)2 as a Model. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b03283] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Makoto Akizuki
- Department
of Environment Systems, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8563, Japan
| | - Yusuke Nakai
- Department
of Environment Systems, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8563, Japan
| | - Tatsuya Fujii
- Research
Institute for Chemical Process Technology, National Institute of Advanced Industrial Science and Technology (AIST), 4-2-1 Nigatake, Miyagino-ku, Sendai, Miyagi 983-8551, Japan
| | - Yoshito Oshima
- Department
of Environment Systems, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8563, Japan
| |
Collapse
|
19
|
Huang Y, Wang G, Zhang H, Li G, Fang D, Wang J, Song Y. Hydrothermal-precipitation preparation of CdS@(Er 3+:Y 3Al 5O 12/ZrO 2) coated composite and sonocatalytic degradation of caffeine. ULTRASONICS SONOCHEMISTRY 2017; 37:222-234. [PMID: 28427627 DOI: 10.1016/j.ultsonch.2017.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 01/08/2017] [Accepted: 01/08/2017] [Indexed: 06/07/2023]
Abstract
Here, we reported a novel method to dispose caffeine by means of ultrasound irradiation combinated with CdS@(Er3+:Y3Al5O12/ZrO2) coated composite as sonocatalyst. The CdS@(Er3+:Y3Al5O12/ZrO2) was synthesized via hydrothermal-precipitation method and then characterized by X-ray diffractometer (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDX) and UV-vis diffuse reflectance spectra (DRS). After that, the sonocatalytic degradation of caffeine in aqueous solution was conducted adopting CdS@(Er3+:Y3Al5O12/ZrO2) and CdS@ZrO2 coated composites as sonocatalysts. In addition, some influencing factors such as CdS and ZrO2 molar proportion, caffeine concentration, ultrasonic irradiation time, sonocatalyst dosage and addition of several inorganic oxidants on sonocatalytic degradation of caffeine were investigated by using UV-vis spectra and gas chromatograph. The experimental results showed that the presence of Er3+:Y3Al5O12 could effectively improve the sonocatalytic degradation activity of CdS@ZrO2. To a certain extent some inorganic oxidants can also enhance sonocatalytic degradation of caffeine in the presence of CdS@(Er3+:Y3Al5O12/ZrO2). The best sonocatalytic degradation ratio (94.00%) of caffeine could be obtained when the conditions of 5.00mg/L caffeine, 1.00g/L prepared CdS@(Er3+:Y3Al5O12/ZrO2), 10.00mmol/LK2S2O8, 180min ultrasonic irradiation (40kHz frequency and 50W output power), 100mL total volume and 25-28°C temperature were adopted. It seems that the method of sonocatalytic degradation caused by CdS@(Er3+:Y3Al5O12/ZrO2) displayspotentialadvantages in disposing caffeine.
Collapse
Affiliation(s)
- Yingying Huang
- College of Chemistry, Liaoning University, Shenyang 110036, PR China
| | - Guowei Wang
- College of Chemistry, Liaoning University, Shenyang 110036, PR China
| | - Hongbo Zhang
- College of Chemistry, Liaoning University, Shenyang 110036, PR China
| | - Guanshu Li
- College of Environment, Liaoning University, Shenyang 110036, PR China
| | - Dawei Fang
- College of Chemistry, Liaoning University, Shenyang 110036, PR China
| | - Jun Wang
- College of Chemistry, Liaoning University, Shenyang 110036, PR China; College of Environment, Liaoning University, Shenyang 110036, PR China.
| | - Youtao Song
- College of Environment, Liaoning University, Shenyang 110036, PR China
| |
Collapse
|
20
|
Effect of water properties on selectivity for 1-octene and 2-octanol reaction systems in sub- and supercritical water using a TiO2 catalyst. J Supercrit Fluids 2017. [DOI: 10.1016/j.supflu.2016.11.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Li H, Yang S, Saravanamurugan S, Riisager A. Glucose Isomerization by Enzymes and Chemo-catalysts: Status and Current Advances. ACS Catal 2017. [DOI: 10.1021/acscatal.6b03625] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Hu Li
- State-Local Joint Engineering Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, PR China
| | - Song Yang
- State-Local Joint Engineering Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, PR China
| | | | - Anders Riisager
- Centre
for Catalysis and Sustainable Chemistry, Department of Chemistry, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| |
Collapse
|
22
|
Zhao C, Tan G, Yang W, Xu C, Liu T, Su Y, Ren H, Xia A. Fast interfacial charge transfer in α-Fe 2O 3-δC δ/FeVO 4-x+δC x-δ@C bulk heterojunctions with controllable phase content. Sci Rep 2016; 6:38603. [PMID: 27924929 PMCID: PMC5141511 DOI: 10.1038/srep38603] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 11/09/2016] [Indexed: 11/29/2022] Open
Abstract
The novelties in this paper are embodied in the fast interfacial charge transfer in α-Fe2O3−δCδ/FeVO4−x+δCx−δ@C bulk heterojunctions with controllable phase compositions. The carbon source-glucose plays an important role as the connecting bridge between the micelles in the solution, forming interfacial C-O, C-O-Fe and O-Fe-C bonds through dehydration and polymerization reactions. Then the extra VO3− around the FeVO4 colloidal particles can react with unstable Fe(OH)3, resulting the phase transformation from α-Fe2O3 (47.99–7.16%) into FeVO4 (52.01–92.84%), promoting photocarriers’ generation capacities. After final carbonization, a part of C atoms enter into lattices of α-Fe2O3 and FeVO4, forming impurity levels and oxygen vacancies to increase effective light absorptions. Another part of C sources turn into interfacial carbon layers to bring fast charge transfer by decreasing the charge transition resistance (from 53.15 kΩ into 8.29 kΩ) and the surface recombination rate (from 64.07% into 7.59%). The results show that the bulk heterojunction with 90.29% FeVO4 and 9.71% α-Fe2O3 shows ideal light absorption, carriers’ transfer efficiency and available photocatalytic property. In general, the synergistic effect of optimized heterojunction structure, carbon replacing and the interface carbon layers are critical to develop great potential in stable and recoverable use.
Collapse
Affiliation(s)
- Chengcheng Zhao
- School of Materials Science and Engineering, Shaanxi University of Science &Technology, Xi'an 710021, China
| | - Guoqiang Tan
- School of Materials Science and Engineering, Shaanxi University of Science &Technology, Xi'an 710021, China
| | - Wei Yang
- School of Materials Science and Engineering, Shaanxi University of Science &Technology, Xi'an 710021, China
| | - Chi Xu
- School of Materials Science and Engineering, Shaanxi University of Science &Technology, Xi'an 710021, China
| | - Ting Liu
- School of Materials Science and Engineering, Shaanxi University of Science &Technology, Xi'an 710021, China
| | - Yuning Su
- School of Materials Science and Engineering, Shaanxi University of Science &Technology, Xi'an 710021, China
| | - Huijun Ren
- School of Materials Science and Engineering, Shaanxi University of Science &Technology, Xi'an 710021, China
| | - Ao Xia
- School of Materials Science and Engineering, Shaanxi University of Science &Technology, Xi'an 710021, China
| |
Collapse
|