1
|
Zhang H, Cao Y, Wang S, Tang Y, Tian L, Cai W, Wei Z, Wu Z, Zhu Y, Guo Q. Photocatalytic removal of ammonia nitrogen from water: investigations and challenges for enhanced activity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:41824-41843. [PMID: 38862798 DOI: 10.1007/s11356-024-33891-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 05/30/2024] [Indexed: 06/13/2024]
Abstract
Ammonia nitrogen (NH3-N/NH4+-N) serves as a crucial chemical in biochemistry and fertilizer synthesis. However, it is also a toxic compound, posing risks from eutrophication to direct threats to human health. Ammonia nitrogen pollution pervades water sources, presenting a significant challenge. While several water treatment technologies exist, biological treatment, though widely used, has its limitations. Hence, green and efficient photocatalytic technology emerges as a promising solution. However, current monolithic semiconductor photocatalysts prove inadequate in controlling ammonia nitrogen pollution. Therefore, this review focuses on enhancing semiconductor photocatalysts' efficiency through modification, discussing four mechanisms: (1) mono-ionic modification; (2) metallic and non-metallic modification; (3) construct heterojunctions; and (4) enhancement of synergistic effects of multiple technologies. The influencing factors of photocatalytic ammonia nitrogen removal efficiency are also explored. Moreover, the review outlines the limitations of current photocatalytic pollution treatment and discusses future development trends and research challenges. Currently, the main products of ammonia nitrogen removal include NO3-, NO2-, and N2. To mitigate secondary pollution, the green process of converting ammonia nitrogen to N2 using photocatalysis emerges as a fundamental approach for future treatment. Overall, this review aims to deepen understanding of photocatalysis in ammonia nitrogen treatment and guide researchers toward widespread implementation of this endeavor.
Collapse
Affiliation(s)
- Huining Zhang
- School of Civil Engineering, Lanzhou University of Technology, Langongping Road 287, Qilihe District, Lanzhou, 730050, China.
- Institute of Nanomaterials Application Technology, Gansu Academy of Sciences, Lanzhou, 730030, China.
| | - Yang Cao
- School of Civil Engineering, Lanzhou University of Technology, Langongping Road 287, Qilihe District, Lanzhou, 730050, China
| | - Shaofeng Wang
- School of Civil Engineering, Lanzhou University of Technology, Langongping Road 287, Qilihe District, Lanzhou, 730050, China
| | - Yuling Tang
- School of Civil Engineering, Lanzhou University of Technology, Langongping Road 287, Qilihe District, Lanzhou, 730050, China
| | - Lihong Tian
- School of Civil Engineering, Lanzhou University of Technology, Langongping Road 287, Qilihe District, Lanzhou, 730050, China
| | - Wenrui Cai
- School of Civil Engineering, Lanzhou University of Technology, Langongping Road 287, Qilihe District, Lanzhou, 730050, China
| | - Zhiqiang Wei
- School of Civil Engineering, Lanzhou University of Technology, Langongping Road 287, Qilihe District, Lanzhou, 730050, China
| | - Zhiguo Wu
- Institute of Nanomaterials Application Technology, Gansu Academy of Sciences, Lanzhou, 730030, China
| | - Ying Zhu
- Institute of Biology, Gansu Academy of Sciences, Lanzhou, 730030, China
| | - Qi Guo
- Institute of Biology, Gansu Academy of Sciences, Lanzhou, 730030, China
| |
Collapse
|
2
|
Li H, Cao Y, Liu P, Li Y, Zhou A, Ye F, Xue S, Yue X. Ammonia-nitrogen removal from water with gC 3N 4-rGO-TiO 2 Z-scheme system via photocatalytic nitrification-denitrification process. ENVIRONMENTAL RESEARCH 2022; 205:112434. [PMID: 34856169 DOI: 10.1016/j.envres.2021.112434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/15/2021] [Accepted: 11/23/2021] [Indexed: 05/22/2023]
Abstract
Photocatalytic removal of NH3-N is expected to be an alternative to the biological method that accompanied with high energy consumption and secondary pollution. However, NH3-N is always oxidized into nitrate and nitrite during the photocatalytic processes, which also need to be removed from the water. Herein, the g-C3N4/rGO/TiO2 Z-scheme photocatalytic system was prepared and used for the NH3-N removal. The results showed the rate constant of NH3-N conversion on it was 0.705 h-1, 1.7 times as high as that on g-C3N4/TiO2, and most of the NH3-N were converted into gaseous products. And the experiment result indicated NH3-N and NO3- in water could enhance the removal of each other. According to the results, the main reaction mechanism is speculated as: ·OH radicals and ·O2- radicals were generated on TiO2 and oxidized the NH3-N into NO3-, and the latter was reduced into non-toxic N2 on the conduction band of g-C3N4. Finally, NH3-N removal performance for actual coking wastewater was investigated, and the stability of the photocatalyst was tested. This work provides some theoretical basis for the two-step degradation of pollutants by Z-scheme photocatalytic system.
Collapse
Affiliation(s)
- Houfen Li
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Yajie Cao
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Pengxiao Liu
- School of Environment and Safety Engineering, North University of China, Taiyuan, 030051, China
| | - Yuzhen Li
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Aijuan Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Fei Ye
- School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, China
| | - Shuai Xue
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Xiuping Yue
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
| |
Collapse
|
3
|
Du T, Zhang G, Zou J. Coupling photocatalytic and electrocatalytic oxidation towards simultaneous removal of humic acid and ammonia-nitrogen in landscape water. CHEMOSPHERE 2022; 286:131717. [PMID: 34418660 DOI: 10.1016/j.chemosphere.2021.131717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/12/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
Aiming to bring photocatalytic and electrocatalytic oxidation processes into solving practical issue of organics and ammonia-nitrogen pollution in landscape water that resulting in algae bloom and eutrophication, this work firstly investigates photocatalytic oxidation of humic acid and electrochemical oxidation of ammonia upon optimization of each process parameters, respectively. The platinum modified titania (Pt/TiO2) exhibits improved activity than pure titania and CuOx, MnOx and NiOx modified titania for decomposition of humic acid. As an application-oriented study, this work has developed a simple and effective brushing and annealing method for immobilization of TiO2 and Pt/TiO2 onto ceramic foam for further application. In addition, the RuO2-IrO2/Ti electrode presents the best electrocatalytic activity compared with RuO2/Ti and IrO2/Ti electrodes in terms of ammonia oxidation, and the ammonia conversion pathways have been studied. Lastly, an integrated and enlarged reactor system employing optimized photocatalytic ceramic foam and stable electrodes has been developed for simultaneous oxidation of humic acid and ammonia-nitrogen in water circulated flow condition, based on cooperative production of reactive oxidant species between photocatalysis and electrocatalysis. The results show that coupled photocatalytic and electrocatalytic oxidation is a promising approach for treatment of organic matter and inorganic ammonia nitrogen in landscape water.
Collapse
Affiliation(s)
- Tingting Du
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, PR China
| | - Guan Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, PR China.
| | - Jing Zou
- General Education Division, The Chinese University of Hong Kong, Shenzhen, Shenzhen, 518172, PR China.
| |
Collapse
|
4
|
Feng J, Zhang X, Zhang G, Li J, Song W, Xu Z. Improved photocatalytic conversion of high-concentration ammonia in water by low-cost Cu/TiO 2 and its mechanism study. CHEMOSPHERE 2021; 274:129689. [PMID: 33529954 DOI: 10.1016/j.chemosphere.2021.129689] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 01/16/2021] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
Platinized TiO2 (Pt/TiO2) as a benchmark photocatalyst shows superior photocatalytic performance in environmental remediation. In order to reduce the cost of photocatalyst for practical use, a series of cooper loaded TiO2 (Cu/TiO2) photocatalysts were prepared by photoreduction method and compared with pure TiO2 and Pt/TiO2 in terms of overall ammonia conversion efficiency and selective oxidation. The as-prepared Cu/TiO2 samples were characterized and analyzed by physicochemical instrumental measurements. The results show that about 60% Cu2+ ions in suspension can be photodeposited onto the surface of TiO2 under UV light irradiation, and is mainly composed by a mixture of Cu/Cu+. The Cu/P25 (0.3 wt% Cu) sample was screened out as the optimal photocatalyst, via photoilluminance spectra analysis and photocatalytic oxidation of ammonia. It shows even better performance compared to Pt/TiO2 in the oxidation of high concentration of ammonia, due to the strong coordination effect by Cu(NH3)n complex formation. Through Electron Spin Resonance (EPR) analysis, and free radical suppression experiments, the active oxidative species account for ammonia oxidation and selective product generation were analyzed, and the possible reaction mechanisms involving photocatalytic ammonia conversion were proposed. ●OH has been identified as the main oxidant that affects the removal efficiency of ammonia nitrogen, whereas O2●- mainly affects the production of N2 and h+ is mainly responsible for the production of NO3-. These results indicate that Cu/TiO2 could be used as a low-cost and efficient photocatalyst in pretreatment process for conversion of high concentration of ammonia in wastewater.
Collapse
Affiliation(s)
- Jianpei Feng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, China
| | - Xiaolei Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, China
| | - Guan Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, China.
| | - Ji Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, China
| | - Wei Song
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, China
| | - Zhiliang Xu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, China
| |
Collapse
|
5
|
Characterization and Effect of Ag(0) vs. Ag(I) Species and Their Localized Plasmon Resonance on Photochemically Inactive TiO2. Catalysts 2019. [DOI: 10.3390/catal9040323] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Commercial TiO2 (anatase) was successfully modified with Ag nanoparticles at different nominal loadings (1%–4%) using a liquid impregnation method. The prepared materials retained the anatase structure and contained a mixture of Ag0 and AgI species. Samples exhibited extended light absorption to the visible region. The effect of Ag loading on TiO2 is studied for the photocatalytic reduction of CO2 to CH4 in a gas–solid process under high-purity conditions. It is remarkable that the reference TiO2 used in this work is entirely inactive in this reaction, but it allows for studying the effect of Ag on the photocatalytic process in more detail. Only in the case of 2% Ag/TiO2 was the formation of CH4 from CO2 observed. Using different light sources, an influence of the localized surface plasmon resonance (LSPR) effect of Ag is verified. A sample in which all Ag has been reduced to the metallic state was less active than the respective sample containing both Ag0 and Ag+, indicating that a mixed oxidation state is beneficial for photocatalytic performance. These results contribute to a better understanding of the effect of metal modification of TiO2 in photocatalytic CO2 reduction.
Collapse
|
6
|
Zhaohui H, Hui C, Lei Z, Xuan H, Weixin L, Wei F, Guanghui W. Biogenic Hierarchical MIL-125/TiO 2 @SiO 2 Derived from Rice Husk and Enhanced Photocatalytic Properties for Dye Degradation. Photochem Photobiol 2018; 94:512-520. [PMID: 29253312 DOI: 10.1111/php.12873] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 10/18/2017] [Indexed: 01/18/2023]
Abstract
The hierarchical porous heterostructured MIL-125/TiO2 @SiO2 composites are successfully obtained by biogenic-templated method using rice husk both as biomorphic. The products are characterized by X-ray diffraction, N2 -adsorption-desorption analysis, scanning electron microscopy and Fourier transform infrared spectroscopy. The results reveal that MIL-125/TiO2 @SiO2 possesses a hierarchical porous structure in scale from micrometer to nanometer with high Brunauer-Emmett-Teller (BET) surface area (385.7-902.7 m2 g-1 ). The photocatalytic mechanism was discussed in detail. Meanwhile, the activity of MIL-125/TiO2 @SiO2 for the photocatalytic degradation of rhodamine B in aqueous medium is significantly higher than that of P25. The current work provides some concept and methods in the development of MOF-based photocatalysts.
Collapse
Affiliation(s)
- Huang Zhaohui
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science & Technology, Wuhan, China
| | - Chen Hui
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science & Technology, Wuhan, China
- HuBei Province Key Laboratory of Coal Conversion and New Carbon Materials, College of Chemical Engineering and Technology, Wuhan University of Science & Technology, Wuhan, China
| | - Zhao Lei
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science & Technology, Wuhan, China
| | - He Xuan
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science & Technology, Wuhan, China
| | - Li Weixin
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science & Technology, Wuhan, China
| | - Fang Wei
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science & Technology, Wuhan, China
| | - Wang Guanghui
- HuBei Province Key Laboratory of Coal Conversion and New Carbon Materials, College of Chemical Engineering and Technology, Wuhan University of Science & Technology, Wuhan, China
| |
Collapse
|