1
|
Zeng Y, Chen G, Liu B, Zhang H, Tu X. Unraveling Temperature-Dependent Plasma-Catalyzed CO 2 Hydrogenation. Ind Eng Chem Res 2023; 62:19629-19637. [PMID: 38037621 PMCID: PMC10682984 DOI: 10.1021/acs.iecr.3c02827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/29/2023] [Accepted: 10/09/2023] [Indexed: 12/02/2023]
Abstract
Hydrogenation of carbon dioxide to value-added chemicals and fuels has recently gained increasing attention as a promising route for utilizing carbon dioxide to achieve a sustainable society. In this study, we investigated the hydrogenation of CO2 over M/SiO2 and M/Al2O3 (M = Co, Ni) catalysts in a dielectric barrier discharge system at different temperatures. We compared three different reaction modes: plasma alone, thermal catalysis, and plasma catalysis. The coupling of catalysts with plasma demonstrated synergy at different reaction temperatures, surpassing the thermal catalysis and plasma alone modes. The highest CO2 conversions under plasma-catalytic conditions at reaction temperatures of 350 and 500 °C were achieved with a Co/SiO2 catalyst (66%) and a Ni/Al2O3 catalyst (68%), respectively. Extensive characterizations were used to analyze the physiochemical characteristics of the catalysts. The results show that plasma power was more efficient than heating power at the same temperature for the CO2 hydrogenation. This demonstrates that the performance of CO2 hydrogenation can be significantly improved in the presence of plasma at lower temperatures.
Collapse
Affiliation(s)
- Yuxuan Zeng
- Department
of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ, U.K.
- Shenzhen
Institute of Advanced Technology, Chinese
Academy of Sciences, Shenzhen 518055, China
| | - Guoxing Chen
- Fraunhofer
Research Institution for Materials Recycling and Resource Strategies
IWKS, Brentanostraße 2a, 63755 Alzenau, Germany
| | - Bowen Liu
- Department
of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ, U.K.
| | - Hao Zhang
- Key
Laboratory of Clean Energy and Carbon Neutrality of Zhejiang Province,
Jiaxing Research Institute, Zhejiang University, Jiaxing 314031, China
- Zhejiang
University Qingshanhu Energy Research Center, 311305 Hangzhou, China
| | - Xin Tu
- Department
of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ, U.K.
| |
Collapse
|
2
|
Guo W, Chen H. Mechanochemical Synthesis of Ni–Y/CeO2 Catalyst for Nonthermal Plasma Catalytic CO2 Methanation. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04456] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wei Guo
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Huanhao Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| |
Collapse
|
3
|
Dielectric Barrier Discharge Plasma-Assisted Catalytic CO2 Hydrogenation: Synergy of Catalyst and Plasma. Catalysts 2022. [DOI: 10.3390/catal12010066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
CO2 hydrogenation is an effective way to convert CO2 to value-added chemicals (e.g., CH4 and CH3OH). As a thermal catalytic process, it suffers from dissatisfactory catalytic performances (low conversion/selectivity and poor stability) and high energy input. By utilizing the dielectric barrier discharge (DBD) technology, the catalyst and plasma could generate a synergy, activating the whole process in a mild condition, and enhancing the conversion efficiency of CO2 and selectivity of targeted product. In this review, a comprehensive summary of the applications of DBD plasma in catalytic CO2 hydrogenation is provided in detail. Moreover, the state-of-the-art design of the reactor and optimization of reaction parameters are discussed. Furthermore, several mechanisms based on simulations and experiments are provided. In the end, the existing challenges of this hybrid system and corresponding solutions are proposed.
Collapse
|
4
|
Abstract
CO2 methanation is recognized as one of the best technologies for storing intermittent renewable energy in the form of CH4. In this study, CO2 methanation performance is investigated using Ni/Al2O3, Ru/Al2O3, and Ru-Ni/Al2O3 as the catalysts under conditions of atmospheric pressure, a molar ratio of H2/CO2 = 5, and a space velocity of 5835 h−1. For reaction temperatures ranging from 250 to 550 °C, it was found that the optimum reaction temperature is 400 °C for all catalysts studied. At this temperature, the maximum values of CO2 conversion, H2 efficiency, and CH4 yield and lowest CO yield can be obtained. With temperatures higher than 400 °C, reverse CO2 methanation results in CO2 conversion and CH4 yield decreases with increased temperature, while CO is formed due to reverse water-gas shift reaction. The experimental results showed that CO2 methanation performance at low temperatures can be enhanced greatly using the bimetallic Ru-Ni catalyst compared with the monometallic Ru or Ni catalyst. Under ascending-descending temperature changes between 250 °C and 550 °C, good thermal stability is obtained from Ru-Ni/Al2O3 catalyst. About a 3% decrease in CO2 conversion is found after three continuous cycles (74 h) test.
Collapse
|
5
|
Yamada K, Ogo S, Yamano R, Higo T, Sekine Y. Low-temperature Conversion of Carbon Dioxide to Methane in an Electric Field. CHEM LETT 2020. [DOI: 10.1246/cl.190930] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Kensei Yamada
- Applied Chemistry, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Shuhei Ogo
- Applied Chemistry, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Ryota Yamano
- Applied Chemistry, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Takuma Higo
- Applied Chemistry, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Yasushi Sekine
- Applied Chemistry, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| |
Collapse
|
6
|
Liu S, Winter LR, Chen JG. Review of Plasma-Assisted Catalysis for Selective Generation of Oxygenates from CO2 and CH4. ACS Catal 2020. [DOI: 10.1021/acscatal.9b04811] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shuang Liu
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Lea R. Winter
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Jingguang G. Chen
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| |
Collapse
|
7
|
Xu W, Dong M, Di L, Zhang X. A Facile Method for Preparing UiO-66 Encapsulated Ru Catalyst and its Application in Plasma-Assisted CO 2 Methanation. NANOMATERIALS 2019; 9:nano9101432. [PMID: 31658648 PMCID: PMC6835285 DOI: 10.3390/nano9101432] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 09/29/2019] [Accepted: 10/04/2019] [Indexed: 01/30/2023]
Abstract
With increasing applications of metal-organic frameworks (MOFs) in the field of gas separation and catalysis, the preparation and performance research of encapsulating metal nanoparticles (NPs) into MOFs (M@MOF) have attracted extensive attention recently. Herein, an Ru@UiO-66 catalyst is prepared by a one-step method. Ru NPs are encapsulated in situ in the UiO-66 skeleton structure during the synthesis of UiO-66 metal-organic framework via a solvothermal method, and its catalytic activity for CO2 methanation with the synergy of cold plasma is studied. The crystallinity and structural integrity of UiO-66 is maintained after encapsulating Ru NPs according to the X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). As illustrated by X-ray photoelectron spectroscopy (XPS), high resolution transmission electron microscopy (HRTEM), and mapping analysis, the Ru species of the hydration ruthenium trichloride precursor are reduced to metallic Ru NPs without additional reducing processes during the synthesis of Ru@UiO-66, and the Ru NPs are uniformly distributed inside the Ru@UiO-66. Thermogravimetric analysis (TGA) and N2 sorption analysis show that the specific surface area and thermal stability of Ru@UiO-66 decrease slightly compared with that of UiO-66 and was ascribed to the encapsulation of Ru NPs in the UiO-66 skeleton. The results of plasma-assisted catalytic CO2 methanation indicate that Ru@UiO-66 exhibits excellent catalytic activity. CO2 conversion and CH4 selectivity over Ru@UiO-66 reached 72.2% and 95.4% under 13.0 W of discharge power and a 30 mL·min-1 gas flow rate ( V H 2 : V C O 2 = 4 : 1 ), respectively. Both values are significantly higher than pure UiO-66 with plasma and Ru/Al2O3 with plasma. The enhanced performance of Ru@UiO-66 is attributed to its unique framework structure and excellent dispersion of Ru NPs.
Collapse
Affiliation(s)
- Weiwei Xu
- College of Physical Science and Technology, Dalian University, Dalian 116622, China.
| | - Mengyue Dong
- College of Physical Science and Technology, Dalian University, Dalian 116622, China.
| | - Lanbo Di
- College of Physical Science and Technology, Dalian University, Dalian 116622, China.
| | - Xiuling Zhang
- College of Physical Science and Technology, Dalian University, Dalian 116622, China.
| |
Collapse
|
8
|
Li J, Ma C, Zhu S, Yu F, Dai B, Yang D. A Review of Recent Advances of Dielectric Barrier Discharge Plasma in Catalysis. NANOMATERIALS 2019; 9:nano9101428. [PMID: 31600913 PMCID: PMC6836096 DOI: 10.3390/nano9101428] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/18/2019] [Accepted: 09/21/2019] [Indexed: 11/24/2022]
Abstract
Dielectric barrier discharge plasma is one of the most popular methods to generate nanthermal plasma, which is made up of a host of high-energy electrons, free radicals, chemically active ions and excited species, so it has the property of being prone to chemical reactions. Due to these unique advantages, the plasma technology has been widely used in the catalytic fields. Compared with the conventional method, the heterogeneous catalyst prepared by plasma technology has good dispersion and smaller particle size, and its catalytic activity, selectivity and stability are significantly improved. In addition, the interaction between plasma and catalyst can achieve synergistic effects, so the catalytic effect is further improved. The review mainly introduces the characteristics of dielectric barrier discharge plasma, development trend and its recent advances in catalysis; then, we sum up the advantages of using plasma technology to prepare catalysts. At the same time, the synergistic effect of plasma technology combined with catalyst on methanation, CH4 reforming, NOx decomposition, H2O2 synthesis, Fischer–Tropsch synthesis, volatile organic compounds removal, catalytic sterilization, wastewater treatment and degradation of pesticide residues are discussed. Finally, the properties of plasma in catalytic reaction are summarized, and the application prospect of plasma in the future catalytic field is prospected.
Collapse
Affiliation(s)
- Ju Li
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China.
| | - Cunhua Ma
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China.
| | - Shengjie Zhu
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China.
| | - Feng Yu
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China.
| | - Bin Dai
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China.
| | - Dezheng Yang
- Laboratory of Plasma Physical Chemistry, School of Physics, Dalian University of Technology, Dalian 116024, China.
- Key Laboratory of Ecophysics, College of Sciences, Shihezi University, Shihezi 832003, China.
| |
Collapse
|
9
|
Low-pressure glow discharge plasma-assisted catalytic CO2 hydrogenation—The effect of metal oxide support on the performance of the Ni-based catalyst. Catal Today 2019. [DOI: 10.1016/j.cattod.2019.03.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Lan L, Wang A, Wang Y. CO2 hydrogenation to lower hydrocarbons over ZSM-5-supported catalysts in a dielectric-barrier discharge plasma reactor. CATAL COMMUN 2019. [DOI: 10.1016/j.catcom.2019.105761] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
11
|
Review of plasma-assisted reactions and potential applications for modification of metal—organic frameworks. Front Chem Sci Eng 2019. [DOI: 10.1007/s11705-019-1811-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
12
|
DBD plasma-assisted CO2 methanation using zeolite-based catalysts: Structure composition-reactivity approach and effect of Ce as promoter. J CO2 UTIL 2018. [DOI: 10.1016/j.jcou.2018.05.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|