1
|
Abstract
CO2 methanation is a promising reaction for utilizing CO2 using hydrogen generated by renewable energy. In this study, CO and CO2 methanation were examined over ceria-supported cobalt catalysts with low cobalt contents. The catalysts were prepared using a wet impregnation and co-precipitation method and pretreated at different temperatures. These preparation variables affected the catalytic performance as well as the physicochemical properties. These properties were characterized using various techniques including N2 physisorption, X-ray diffraction, H2 chemisorption, temperature-programmed reduction with H2, and temperature-programmed desorption after CO2 chemisorption. Among the prepared catalysts, the ceria-supported cobalt catalyst that was prepared using a wet impregnation method calcined in air at 500 °C, and reduced in H2 at 500 °C, showed the best catalytic performance. It is closely related to the large catalytically active surface area, large surface area, and large number of basic sites. The in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) study revealed the presence of carbonate, bicarbonate, formate, and CO on metallic cobalt.
Collapse
|
2
|
Improving Coking Resistance and Catalytic Performance of Ni Catalyst from LaNiO3 Perovskite by Dispersion on SBA-15 Mesoporous Silica for Hydrogen Production by Steam Reforming of Ethanol. Top Catal 2021. [DOI: 10.1007/s11244-021-01533-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
3
|
Ahmad YH, Mohamed AT, Kumar A, Al-Qaradawi SY. Solution combustion synthesis of Ni/La 2O 3 for dry reforming of methane: tuning the basicity via alkali and alkaline earth metal oxide promoters. RSC Adv 2021; 11:33734-33743. [PMID: 35497540 PMCID: PMC9042257 DOI: 10.1039/d1ra05511a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 10/11/2021] [Indexed: 11/21/2022] Open
Abstract
The production of syngas via dry reforming of methane (DRM) has drawn tremendous research interest, ascribed to its remarkable economic and environmental impacts. Herein, we report the synthesis of K, Na, Cs, Li, and Mg-promoted Ni/La2O3 using solution combustion synthesis (SCS). The properties of the catalysts were determined by N2 physisorption experiments, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectrometry (XPS), and H2-TPR (temperature programmed reduction). In addition, their catalytic performance towards DRM was evaluated at 700 °C. The results demonstrated that all catalysts exhibited porous structures with high specific surface area, in particular, Mg-promoted Ni/La2O3 (Mg–Ni–La2O3) which depicted the highest surface area and highest pore volume (54.2 m2 g−1, 0.36 cm3 g−1). Furthermore, Mg–Ni–La2O3 exhibited outstanding catalytic performance in terms of activity and chemical stability compared to its counterparts. For instance, at a gas hourly space velocity (GHSV) of 30 000 mL g−1 h−1, it afforded 83.2% methane conversion and 90.8% CO2 conversion at 700 °C with no detectable carbon deposition over an operating period of 100 h. The superb DRM catalytic performance of Mg–Ni–La2O3 was attributed to the high specific surface area/porosity, strong metal-support interaction (MSI), and enhanced basicity, in particular the strong basic sites compared to other promoted catalysts. These factors remarkably enhance the catalytic performance and foster resistance to coke deposition. Alkali and alkaline earth metal oxides-promoted Ni/La2O3 catalysts synthesized by solution combustion synthesis revealed enhanced catalytic performance towards dry reforming of methane.![]()
Collapse
Affiliation(s)
- Yahia H Ahmad
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University Doha 2713 Qatar
| | - Assem T Mohamed
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University Doha 2713 Qatar
| | - A Kumar
- Department of Chemical Engineering, College of Engineering, Qatar University Doha 2713 Qatar
| | - Siham Y Al-Qaradawi
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University Doha 2713 Qatar
| |
Collapse
|
4
|
Baraka S, Bouearan K, Caner L, Fontaine C, Epron F, Brahmi R, Bion N. Catalytic performances of natural Ni-bearing clay minerals for production of syngas from dry reforming of methane. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101696] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
5
|
Rajkumar T, Sápi A, Ábel M, Farkas F, Gómez-Pérez JF, Kukovecz Á, Kónya Z. Ni–Zn–Al-Based Oxide/Spinel Nanostructures for High Performance, Methane-Selective CO2 Hydrogenation Reactions. Catal Letters 2020; 150:1527-1536. [DOI: 10.1007/s10562-019-03051-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 11/21/2019] [Indexed: 11/27/2022]
Abstract
Abstract
In the present study, NiO modified ZnAl2O4 and ZnO modified NiAl2O4 spinel along with pure Al2O3, ZnAl2O4 and NiAl2O4 for comparison in the CO2 hydrogenation reaction have been investigated. It was found that NiAl2O4, NiO/ZnAl2O4 and ZnO/NiAl2O4 catalysts exhibited outstanding activity and selectivity towards methane even at high temperature compared to similar spinel structures reported in the literature. NiO/ZnAl2O4 catalyst showed CO2 consumption rate of ~ 19 μmol/g·s at 600 °C and ~ 85% as well as ~ 50% of methane selectivity at 450 °C and 600 °C, respectively. The high activity and selectivity of methane can be attributed to the presence of metallic Ni and Ni/NiO/ZnAl2O4 interface under the reaction conditions as evidenced by the XRD results.
Graphic Abstract
High performance Ni–Zn–Al-based oxide/spinel nanostructures is synthesized and NiO/ZnAl2O4 catalyst exhibited higher catalytic activity in the CO2 hydrogenation reaction due to the presence of metal support interaction between Ni and ZnAl2O4 support.
Collapse
|
6
|
Zhang T, Liu Q. Lanthanum-Modified MCF-Derived Nickel Phyllosilicate Catalyst for Enhanced CO 2 Methanation: A Comprehensive Study. ACS APPLIED MATERIALS & INTERFACES 2020; 12:19587-19600. [PMID: 32281371 DOI: 10.1021/acsami.0c03243] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
For the traditional preparation method, it is challenging to fabricate a supported nickel catalyst with fine size at high loading. In this work, a group of La-modified mesostructured cellular foam (MCF)-derived nickel phyllosilicates was designed and synthetized by a hydrothermal method followed by an impregnation-modification of La2O3, whose Ni contents varied from 25.3 to 32.2 wt %. Both the special property of phyllosilicate and the addition of a La2O3 modifier played significant roles in achieving high Ni dispersion and excellent catalytic performance. The formed nickel phyllosilicate was beneficial to obtain small Ni nanoparticles (<5 nm) due to its strong metal-support interaction and high specific surface area; the addition of the La2O3 modifier could further reduce the Ni particle size and decrease the reduction difficulty of the fabricated samples. On the contrary, a large Ni particle size of 13.0 nm was observed on the impregnated Ni/MCF (N/M-Im) catalyst with a Ni content of 31.7 wt %. As a result, the nickel phyllosilicate catalyst showed higher catalytic activity than the impregnated one, and the La modifier could further improve the catalytic activity especially at low temperature (<400 °C). Among all catalysts, the modified phyllosilicate catalyst N/M-P-32-5L with 180 °C-32 h-hydrothermal treatment and La2O3 content of 5 wt % was the best owing to its small-sized Ni particles, high H2 and CO2 chemisorption capacity, large turnover frequency (TOF) value, and low activation energy of 69.83 kJ mol-1. In addition, the intermediates of formate and CO were detected through in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) analysis. In a 100 h-lifetime test under harsh conditions and 600 °C-steam treatment, N/M-P-32-5L showed both high sintering resistance of Ni particles and high thermal stability without the collapse of pores as well as decrease of catalytic activity, which was attributed to the special physical and chemical properties of MCF-derived nickel phyllosilicate, strong metal-support interaction over the catalyst, and the promotion of the La2O3 modifier.
Collapse
Affiliation(s)
- Tengfei Zhang
- Key Laboratory of Low Carbon Energy and Chemical Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Qing Liu
- Key Laboratory of Low Carbon Energy and Chemical Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| |
Collapse
|
7
|
A La-promoted Ni/MgAl2O4 catalyst with superior methanation performance for the production of synthetic natural gas. Catal Today 2020. [DOI: 10.1016/j.cattod.2019.07.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
8
|
|
9
|
Single and Dual Metal Oxides as Promising Supports for Carbon Monoxide Removal from an Actual Syngas: The Crucial Role of Support on the Selectivity of the Au–Cu System. Catalysts 2019. [DOI: 10.3390/catal9100852] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A catalytic screening was performed to determine the effect of the support on the performance of an Au–Cu based system for the removal of CO from an actual syngas. First, a syngas was obtained from reforming of ethanol. Then, the reformer outlet was connected to a second reactor, where Au–Cu catalysts supported on several single and dual metal oxides (i.e., CeO2, SiO2, ZrO2, Al2O3, La2O3, Fe2O3, CeO2-SiO2, CeO2-ZrO2, and CeO2-Al2O3) were evaluated. AuCu/CeO2 was the most active catalyst due to an elevated oxygen mobility over the surface, promoting CO2 formation from adsorption of C–O* and OH− intermediates on Au0 and CuO species. However, its lower capacity to release the surface oxygen contributes to the generation of stable carbon deposits, which lead to its rapid deactivation. On the other hand, AuCu/CeO2-SiO2 was more stable due to its high surface area and lower formation of formate and carbonate intermediates, mitigating carbon deposits. Therefore, use of dual supports could be a promising strategy to overcome the low stability of AuCu/CeO2. The results of this research are a contribution to integrated production and purification of H2 in a compact system.
Collapse
|
10
|
Fakeeha AH, Kasim SO, Ibrahim AA, Abasaeed AE, Al-Fatesh AS. Influence of Nature Support on Methane and CO 2 Conversion in a Dry Reforming Reaction over Nickel-Supported Catalysts. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E1777. [PMID: 31159285 PMCID: PMC6600765 DOI: 10.3390/ma12111777] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 05/20/2019] [Accepted: 05/23/2019] [Indexed: 11/16/2022]
Abstract
A promising method to reduce global warming has been methane reforming with CO2, as it combines two greenhouse gases to obtain useful products. In this study, Ni-supported catalysts were synthesized using the wet impregnation method to obtain 5%Ni/Al2O3(SA-5239), 5%Ni/Al2O3(SA-6175), 5%Ni/SiO2, 5%Ni/MCM41, and 5%Ni/SBA15. The catalysts were tested in dry reforming of methane at 700 °C, 1 atm, and a space velocity of 39,000 mL/gcat h, to study the interaction of Ni with the supports, and evaluation was based on CH4 and CO2 conversions. 5%Ni/Al2O3(SA-6175) and 5%Ni/SiO2 gave the highest conversion of CH4 (78 and 75%, respectively) and CO2 (84 and 82%, respectively). The catalysts were characterized by some techniques. Ni phases were identified by X-ray diffraction patterns. Brunauer-Emmett-Teller analysis showed different surface areas of the catalysts with the least being 4 m2/g and the highest 668 m2/g belonging to 5%Ni/Al2O3(SA-5239) and 5%Ni/SBA15, respectively. The reduction profiles revealed weak NiO-supports interaction for 5%Ni/Al2O3(SA-5239), 5%Ni/MCM41, and 5%Ni/SBA15; while strong interaction was observed in 5%Ni/Al2O3(SA-6175) and 5%Ni/SiO2. The 5%Ni/Al2O3(SA-6175) and 5%Ni/SiO2 were close with respect to performance; however, the former had a higher amount of carbon deposit, which is mostly graphitic, according to the conducted thermal analysis. Carbon deposits on 5%Ni/SiO2 were mainly atomic in nature.
Collapse
Affiliation(s)
- Anis Hamza Fakeeha
- Chemical Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia.
| | - Samsudeen Olajide Kasim
- Chemical Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia.
| | - Ahmed Aidid Ibrahim
- Chemical Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia.
| | - Ahmed Elhag Abasaeed
- Chemical Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia.
| | - Ahmed Sadeq Al-Fatesh
- Chemical Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia.
| |
Collapse
|
11
|
Highly Loaded Mesoporous Ni–La2O3 Catalyst Prepared by Colloidal Solution Combustion Method for CO2 Methanation. Catalysts 2019. [DOI: 10.3390/catal9050442] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Highly dispersed Ni-based catalysts for CO2 methanation have been extensively studied over the last decade. However, a highly loaded Ni-based catalyst always results in a large Ni particle size and poor CO2 methanation activity. In this work, a colloidal solution combustion method was used to prepare a highly loaded Ni–La2O3 catalyst (50 wt % Ni) with a small Ni particle size and abundant metal–support interface. The characterizations demonstrated that a Ni–La2O3 catalyst prepared in this way has a mesoporous structure and a small Ni particle size. Due to the small Ni particle size and abundant metal–support interface, the highly loaded mesoporous Ni–La2O3 catalyst exhibits higher activity and selectivity in CO2 methanation compared to the Ni–La2O3 catalyst prepared by a conventional solution combustion method.
Collapse
|
12
|
Zhang X, Rui N, Jia X, Hu X, Liu CJ. Effect of decomposition of catalyst precursor on Ni/CeO2 activity for CO methanation. CHINESE JOURNAL OF CATALYSIS 2019. [DOI: 10.1016/s1872-2067(19)63289-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
K-Modulated Co Nanoparticles Trapped in La-Ga-O as Superior Catalysts for Higher Alcohols Synthesis from Syngas. Catalysts 2019. [DOI: 10.3390/catal9030218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Owing to the outstanding catalytic performance for higher alcohol synthesis, Ga-Co catalysts have attracted much attention. In view of their unsatisfactory stability and alcohol selectivity, herein, K-modulated Co nanoparticles trapped in La-Ga-O catalysts were prepared by the reduction of La1−xKxCo0.65Ga0.35O3 perovskite precursor. Benefiting from the atomic dispersion of all the elements in the precursor, during the reduction of La1−xKxCo0.65Ga0.35O3, Co nanoparticles could be confined into the K-modified La-Ga-O composite oxides, and the confinement of La-Ga-O could improve the anti-sintering performance of Co nanoparticles. In addition, the addition of K modulated parts of La-Ga-O into La2O3, which ameliorated the anti-carbon deposition performance. Finally, the addition of K increased the dispersion of cobalt and provided more electron donors to metallic Co, resulting in a high activity and superior selectivity to higher alcohols. Benefiting from the above characteristics, the catalyst possesses excellent activity, good selectivity, and superior stability.
Collapse
|
14
|
Worsley MP, Forrest PN, Roesch S, Thatcher C, Sermon PA, Kaur P. Nanoengineering ABO 3 active sites from low-energy routes (TX100-stabilised water-in-oil microemulsions, surface segregation and surface complexation on colloidal AlOOH/sol-gel Al 2O 3 surfaces) for pollution control catalysis. Faraday Discuss 2018; 208:537-553. [PMID: 29946606 DOI: 10.1039/c8fd00006a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
It is shown that water-in-oil microemulsions (m/e or μE) can produce BaCeO3 (BCO) and LaCoO3 (LCO) precursors. The nanoparticles (NPs) adsorb on AlOOH sols, in much the same way as Turkevich previously immobilised platinum group metal sols. BCO is active in CO and propane oxidation and NO removal under stoichiometric exhaust conditions, but LCO is a better oxidation catalyst. Activity was also seen when Ba,Ce and La,Co are inserted into/segregate at the surface of AlOOH/Al2O3. However, there is only formation of low levels of BCO, CAIO3 (CAO), LCO and LaAIO3 (LAO) perovskites, along with aluminates and separate oxides. The complexing of cations by AlOOH surface-held oxalate ions, albeit with different efficiencies, has also been explored. All three routes yield active catalysts with micro-domains of crystallinity; microemulsions produce the best defined perovskite NPs, but even those from surface segregation have higher turnover numbers than traditional Pt catalysts. Perovskite NPs may open up green chemistry for air pollution control that is consistent with a circular economy.
Collapse
Affiliation(s)
- M P Worsley
- Nanomaterials Laboratory, Wolfson Centre, Brunel University, Uxbridge, Middx. UB8 3PH, UK.
| | | | | | | | | | | |
Collapse
|
15
|
Yang Q, Liu G, Liu Y. Perovskite-Type Oxides as the Catalyst Precursors for Preparing Supported Metallic Nanocatalysts: A Review. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b03251] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Qilei Yang
- Tianjin Key Laboratory of Applied Catalysis Science & Technology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science & Engineering, Tianjin 300072, P. R. China
| | - Guilong Liu
- College
of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, Henan, P. R. China
| | - Yuan Liu
- Tianjin Key Laboratory of Applied Catalysis Science & Technology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science & Engineering, Tianjin 300072, P. R. China
| |
Collapse
|