1
|
Promhuad P, Sawatmongkhon B, Theinnoi K, Wongchang T, Chollacoop N, Sukjit E, Tunmee S, Tsolakis A. Effect of Metal Oxides (CeO 2, ZnO, TiO 2, and Al 2O 3) as the Support for Silver-Supported Catalysts on the Catalytic Oxidation of Diesel Particulate Matter. ACS OMEGA 2024; 9:19282-19294. [PMID: 38708233 PMCID: PMC11064198 DOI: 10.1021/acsomega.4c00218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/06/2024] [Accepted: 04/09/2024] [Indexed: 05/07/2024]
Abstract
This work presented the influence of metal oxides as the support for silver-supported catalysts on the catalytic oxidation of diesel particulate matter (DPM). The supports selected to be used in this work were CeO2 (reducible), ZnO (semiconductor), TiO2 (reducible and semiconductor), and Al2O3 (acidic). The properties of the synthesized catalysts were investigated using XRD, TEM, H2-TPR, and XPS techniques. The DPM oxidation activity was performed using the TGA method. Different states of silver (e.g., Ag° and Ag+) were formed with different concentrations and affected the performance of the DPM oxidation. Ag2O and lattice oxygen, which were mainly generated by Ag/ZnO and Ag/CeO2, were responsible for combusting the VOCs. The metallic silver (Ag°) formed primarily on Ag/Al2O3 and Ag/TiO2 was the main component promoting soot combustion. Contact between the catalyst and DPM had a minor effect on VOC oxidation but significantly affected the soot oxidation activity.
Collapse
Affiliation(s)
- Punya Promhuad
- College
of Industrial Technology, King Mongkut’s
University of Technology North Bangkok, 1518 Pracharat 1 Road, Wongsawang, Bangsue, Bangkok 10800, Thailand
| | - Boonlue Sawatmongkhon
- College
of Industrial Technology, King Mongkut’s
University of Technology North Bangkok, 1518 Pracharat 1 Road, Wongsawang, Bangsue, Bangkok 10800, Thailand
- Research
Centre for Combustion Technology and Alternative Energy (CTAE), Science
and Technology Research Institute, King
Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand
| | - Kampanart Theinnoi
- College
of Industrial Technology, King Mongkut’s
University of Technology North Bangkok, 1518 Pracharat 1 Road, Wongsawang, Bangsue, Bangkok 10800, Thailand
- Research
Centre for Combustion Technology and Alternative Energy (CTAE), Science
and Technology Research Institute, King
Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand
| | - Thawatchai Wongchang
- Research
Centre for Combustion Technology and Alternative Energy (CTAE), Science
and Technology Research Institute, King
Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand
- Department
of Mechanical and Automotive Engineering Technology, Faculty of Engineering
and Technology, King Mongkut’s University
of Technology North Bangkok (Rayong Campus), Rayong 21120, Thailand
| | - Nuwong Chollacoop
- Renewable
Energy and Energy Efficiency Research Team, National Energy Technology Center (ENTEC), 114 Thailand Science Park, Klong Luang, Pathumthani 12120, Thailand
| | - Ekarong Sukjit
- School
of Mechanical Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Sarayut Tunmee
- Synchrotron
Light Research Institute, 111 University Avenue, Muang District, Nakhon
Ratchasima 30000, Thailand
| | - Athanasios Tsolakis
- School
of Engineering, Mechanical and Manufacturing Engineering, University of Birmingham, Birmingham B15 2TT, U.K.
| |
Collapse
|
3
|
Zhou XT, Yu HY, Li Y, Wu HB, Ji HB. Manganese porphyrin-mediated aerobic epoxidation of propylene with isoprene: A new strategy for simultaneously preparing propylene epoxide and isoprene monoxide. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
4
|
One-Pot Synthesis of 1,2-Pentanediol via the Bifunctional Catalyst of Ti-MWW Strengthened by CeO2 Nanoparticles. Catal Letters 2022. [DOI: 10.1007/s10562-021-03804-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Harrison ARP, Marek EJ. Selective formation of propan-1-ol from propylene via a chemical looping approach. REACT CHEM ENG 2022. [DOI: 10.1039/d2re00222a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel chemical looping approach for propan-1-ol production from propylene.
Collapse
Affiliation(s)
- A. R. P. Harrison
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - E. J. Marek
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| |
Collapse
|
6
|
AbdelDayem HM, Al-Shihry SS, Hassan SA. Impact of Titanium in Controlling Silver Particle Size on Enhancement of Catalytic Performance of AgMoO 3/Ti-HMS for Direct Epoxidation of Propylene. ACS OMEGA 2020; 5:4469-4481. [PMID: 32175494 PMCID: PMC7066565 DOI: 10.1021/acsomega.9b03645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/31/2020] [Indexed: 06/10/2023]
Abstract
In this work, direct gas-phase epoxidation of propylene (DPO) to propylene oxide by molecular oxygen has been studied by using Ag-MoO3 supported on titanium-containing hexagonal mesoporous silica (Ti-HMS n ) of different Si/Ti molar ratios. The promotion effect of NaCl on the synthesized catalysts has also been investigated. Among the studied supports, the hexagonal mesoporous silica (HMS) with a Si/Ti ratio of 10 was the most suitable one for production of propylene oxide (PO). The optimal performance of the AgMo/Ti-HMS10 catalyst in DPO exhibited a selectivity to PO of 43.2% with a propylene conversion of 14.1%, at 400 °C, 0.1 MPa, and a space velocity of 12,000 h-1. The catalyst verified good stability over at least 20 h on stream. Only 2.7% PO selectivity with a propylene conversion of 10.1% was achieved over the AgMo/HMS sample. The incorporation of Ti into the HMS frame could optimize the particle size distribution of Ag, producing Ag nanoparticles with an average size of 6.8 nm compared with that of Ag/HMS (24.3 nm). The in situ Raman spectrum of AgMo/Ti-HMS10 heated in a stream of C3H6/He at 400 °C showed new bands at 616, 390, and 210 cm-1, characteristic of the Ag x Mo y O z intermediate phase. The obtained results suggested that this formed AgMo/Ti-HMS10 phase could most likely be relevant for selective epoxidation of propylene. However, during the reaction of C3H6 with AgMo/HMS, the formation of this intermediate was hardly detected. On the other hand, the hydrogen temperature-programmed reduction measurements indicated improved reducibility of MoO3 in the AgMo/Ti-HMS10 catalyst, which acknowledged the role of Mo6+ in gaining electrons from silver to form positively charged Ag. This could reduce the effective charge of the adsorbed oxygen on silver sites and in turn favor the epoxidation path of propylene rather than the combustion route. Also, during the reaction of C3H6 with NaAgMo/Ti-HMS10 at 400 °C, two new Raman bands were detected at 277 and 350 cm-1, characteristic of Ag2MoO4.
Collapse
Affiliation(s)
- Hany M. AbdelDayem
- Faculty
of Science, Chemistry Department, Ain Shams
University, Abassia, Cairo 11566, Egypt
- College
of Science, Chemistry Department, King Faisal
University, Al-Hasa, Al-Hofuf 31982/380, Eastern Province, Saudi Arabia
| | - Shar S. Al-Shihry
- College
of Science, Chemistry Department, King Faisal
University, Al-Hasa, Al-Hofuf 31982/380, Eastern Province, Saudi Arabia
| | - Salah A. Hassan
- Faculty
of Science, Chemistry Department, Ain Shams
University, Abassia, Cairo 11566, Egypt
| |
Collapse
|