1
|
Shi J, Pršlja P, Jin B, Suominen M, Sainio J, Jiang H, Han N, Robertson D, Košir J, Caro M, Kallio T. Experimental and Computational Study Toward Identifying Active Sites of Supported SnO x Nanoparticles for Electrochemical CO 2 Reduction Using Machine-Learned Interatomic Potentials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402190. [PMID: 38794869 DOI: 10.1002/smll.202402190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Indexed: 05/26/2024]
Abstract
SnOx has received great attention as an electrocatalyst for CO2 reduction reaction (CO2RR), however; it still suffers from low activity. Moreover, the atomic-level SnOx structure and the nature of the active sites are still ambiguous due to the dynamism of surface structure and difficulty in structure characterization under electrochemical conditions. Herein, CO2RR performance is enhanced by supporting SnO2 nanoparticles on two common supports, vulcan carbon and TiO2. Then, electrolysis of CO2 at various temperatures in a neutral electrolyte reveals that the application window for this catalyst is between 12 and 30 °C. Furthermore, this study introduces a machine learning interatomic potential method for the atomistic simulation to investigate SnO2 reduction and establish a correlation between SnOx structures and their CO2RR performance. In addition, selectivity is analyzed computationally with density functional theory simulations to identify the key differences between the binding energies of *H and *CO2 -, where both are correlated with the presence of oxygen on the nanoparticle surface. This study offers in-depth insights into the rational design and application of SnOx-based electrocatalysts for CO2RR.
Collapse
Affiliation(s)
- Junjie Shi
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, Espoo, Finland
| | - Paulina Pršlja
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, Espoo, Finland
| | - Benjin Jin
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, Espoo, Finland
| | - Milla Suominen
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, Espoo, Finland
| | - Jani Sainio
- Department of Applied Physics, School of Science, Aalto University, Espoo, Finland
| | - Hua Jiang
- Department of Applied Physics, School of Science, Aalto University, Espoo, Finland
| | - Nana Han
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, Espoo, Finland
| | - Daria Robertson
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo, Finland
| | - Janez Košir
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, Espoo, Finland
| | - Miguel Caro
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, Espoo, Finland
| | - Tanja Kallio
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, Espoo, Finland
| |
Collapse
|
2
|
Mezza A, Bartoli M, Chiodoni A, Zeng J, Pirri CF, Sacco A. Optimizing the Performance of Low-Loaded Electrodes for CO 2-to-CO Conversion Directly from Capture Medium: A Comprehensive Parameter Analysis. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2314. [PMID: 37630899 PMCID: PMC10458350 DOI: 10.3390/nano13162314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/04/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023]
Abstract
Gas-fed reactors for CO2 reduction processes are a solid technology to mitigate CO2 accumulation in the atmosphere. However, since it is necessary to feed them with a pure CO2 stream, a highly energy-demanding process is required to separate CO2 from the flue gasses. Recently introduced bicarbonate zero-gap flow reactors are a valid solution to integrate carbon capture and valorization, with them being able to convert the CO2 capture medium (i.e., the bicarbonate solution) into added-value chemicals, such as CO, thus avoiding this expensive separation process. We report here a study on the influence of the electrode structure on the performance of a bicarbonate reactor in terms of Faradaic efficiency, activity, and CO2 utilization. In particular, the effect of catalyst mass loading and electrode permeability on bicarbonate electrolysis was investigated by exploiting three commercial carbon supports, and the results obtained were deepened via electrochemical impedance spectroscopy, which is introduced for the first time in the field of bicarbonate electrolyzers. As an outcome of the study, a novel low-loaded silver-based electrode fabricated via the sputtering deposition technique is proposed. The silver mass loading was optimized by increasing it from 116 μg/cm2 to 565 μg/cm2, thereby obtaining an important enhancement in selectivity (from 55% to 77%) and activity, while a further rise to 1.13 mg/cm2 did not provide significant improvements. The tremendous effect of the electrode permeability on activity and proficiency in releasing CO2 from the bicarbonate solution was shown. Hence, an increase in electrode permeability doubled the activity and boosted the production of in situ CO2 by 40%. The optimized Ag-electrode provided Faradaic efficiencies for CO close to 80% at a cell voltage of 3 V and under ambient conditions, with silver loading of 565 μg/cm2, the lowest value ever reported in the literature so far.
Collapse
Affiliation(s)
- Alessio Mezza
- Center for Sustainable Future Technologies @Polito, Istituto Italiano di Tecnologia, Via Livorno 60, 10144 Torino, Italy; (M.B.); (A.C.); (J.Z.); (C.F.P.)
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Mattia Bartoli
- Center for Sustainable Future Technologies @Polito, Istituto Italiano di Tecnologia, Via Livorno 60, 10144 Torino, Italy; (M.B.); (A.C.); (J.Z.); (C.F.P.)
| | - Angelica Chiodoni
- Center for Sustainable Future Technologies @Polito, Istituto Italiano di Tecnologia, Via Livorno 60, 10144 Torino, Italy; (M.B.); (A.C.); (J.Z.); (C.F.P.)
| | - Juqin Zeng
- Center for Sustainable Future Technologies @Polito, Istituto Italiano di Tecnologia, Via Livorno 60, 10144 Torino, Italy; (M.B.); (A.C.); (J.Z.); (C.F.P.)
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Candido F. Pirri
- Center for Sustainable Future Technologies @Polito, Istituto Italiano di Tecnologia, Via Livorno 60, 10144 Torino, Italy; (M.B.); (A.C.); (J.Z.); (C.F.P.)
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Adriano Sacco
- Center for Sustainable Future Technologies @Polito, Istituto Italiano di Tecnologia, Via Livorno 60, 10144 Torino, Italy; (M.B.); (A.C.); (J.Z.); (C.F.P.)
| |
Collapse
|
3
|
Olivier A, Desgagnés A, Mercier E, Iliuta MC. New Insights on Catalytic Valorization of Carbon Dioxide by Conventional and Intensified Processes. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.3c00064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Antoine Olivier
- Department of Chemical Engineering, Laval University, Québec, G1 V 0A6, Canada
| | - Alex Desgagnés
- Department of Chemical Engineering, Laval University, Québec, G1 V 0A6, Canada
| | - Etienne Mercier
- Department of Chemical Engineering, Laval University, Québec, G1 V 0A6, Canada
| | - Maria C. Iliuta
- Department of Chemical Engineering, Laval University, Québec, G1 V 0A6, Canada
| |
Collapse
|
4
|
Lv J, Yin R, Zhou L, Li J, Kikas R, Xu T, Wang Z, Jin H, Wang X, Wang S. Microenvironment Engineering for the Electrocatalytic CO
2
Reduction Reaction. Angew Chem Int Ed Engl 2022; 61:e202207252. [DOI: 10.1002/anie.202207252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Jing‐Jing Lv
- Key Laboratory of Carbon Materials of Zhejiang Province Institute of New Materials and Industrial Technologies Wenzhou University Wenzhou Zhejiang 325035 China
| | - Ruonan Yin
- Key Laboratory of Carbon Materials of Zhejiang Province Institute of New Materials and Industrial Technologies Wenzhou University Wenzhou Zhejiang 325035 China
| | - Limin Zhou
- Key Laboratory of Carbon Materials of Zhejiang Province Institute of New Materials and Industrial Technologies Wenzhou University Wenzhou Zhejiang 325035 China
| | - Jun Li
- Key Laboratory of Carbon Materials of Zhejiang Province Institute of New Materials and Industrial Technologies Wenzhou University Wenzhou Zhejiang 325035 China
| | - Reddu Kikas
- School of Chemical and Biomedical Engineering Nanyang Technological University 62 Nanyang Drive Singapore 637459 Singapore
| | - Ting Xu
- Key Laboratory of Carbon Materials of Zhejiang Province Institute of New Materials and Industrial Technologies Wenzhou University Wenzhou Zhejiang 325035 China
| | - Zheng‐Jun Wang
- Key Laboratory of Carbon Materials of Zhejiang Province Institute of New Materials and Industrial Technologies Wenzhou University Wenzhou Zhejiang 325035 China
| | - Huile Jin
- Key Laboratory of Carbon Materials of Zhejiang Province Institute of New Materials and Industrial Technologies Wenzhou University Wenzhou Zhejiang 325035 China
| | - Xin Wang
- School of Chemical and Biomedical Engineering Nanyang Technological University 62 Nanyang Drive Singapore 637459 Singapore
| | - Shun Wang
- Key Laboratory of Carbon Materials of Zhejiang Province Institute of New Materials and Industrial Technologies Wenzhou University Wenzhou Zhejiang 325035 China
| |
Collapse
|
5
|
Lv JJ, Yin R, Zhou L, Li J, Kikas R, Xu T, Wang ZJ, Jin H, Wang X, Wang S. Microenvironment Engineering for the Electrocatalytic CO2 Reduction Reaction. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jing-Jing Lv
- Wenzhou University Institute of New Materials and Industrial Technologies CHINA
| | - Ruonan Yin
- Wenzhou University Institute of New Materials and Industrial Technologies CHINA
| | - Limin Zhou
- Wenzhou University Institute of New Materials and Industrial Technologies CHINA
| | - Jun Li
- Wenzhou University Institute of New Materials and Industrial Technologies CHINA
| | - Reddu Kikas
- Nanyang Technological University School of Chemical and Biomedical Engineering SINGAPORE
| | - Ting Xu
- Wenzhou University Institute of New Materials and Industrial Technologies CHINA
| | - Zheng-Jun Wang
- Wenzhou University Institute of New Materials and Industrial Technologies CHINA
| | - Huile Jin
- Wenzhou University Institute of New Materials and Industrial Technologies CHINA
| | - Xin Wang
- Nanyang Technological University School of Chemical and Biomedical Engineering SINGAPORE
| | - Shun Wang
- Wenzhou University Nano-materials & Chemistry Key Laboratory Xueyuan Middle Road 325027 Wenzhou CHINA
| |
Collapse
|
6
|
Erbil HY. Precursor film formation on catalyst–electrolyte–gas boundaries during CO 2 electroreduction with gas diffusion electrodes. Catal Sci Technol 2022. [DOI: 10.1039/d2cy01576e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Thin and long layers of catholyte precursor films spread near triple-phase boundaries on composite catalysts containing hydrophobic materials. Dissolved CO2 molecules in the precursor films reduce on the composite catalyst surface without depletion.
Collapse
|
7
|
Electrochemical Reduction of CO2 to CO on Hydrophobic Zn Foam Rod in a Microchannel Electrochemical Reactor. Processes (Basel) 2021. [DOI: 10.3390/pr9091592] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Due to CO2 mass transfer limitation as well as the competition of hydrogen evolution reaction in electroreduction of CO2 in the aqueous electrolyte, Zn-based electrodes normally exhibit unsatisfying selectivity for CO production, especially at high potentials. In this work, we introduced a zinc myristate (Zn [CH3(CH2)12COO]2) hydrophobic layer on the surface of zinc foam electrode by an electrodeposition method. The obtained hydrophobic zinc foam electrode showed a high Faradaic efficiency (FE) of 91.8% for CO at −1.9 V (vs. saturated calomel electrode, SCE), which was a remarkable improvement over zinc foam (FECO = 81.87%) at the same potentials. The high roughness of the hydrophobic layer has greatly increased the active surface area and CO2 mass transfer performance by providing abundant gas-liquid-solid contacting area. This work shows adding a hydrophobic layer on the surface of the catalyst is an effective way to improve the electrochemical CO2 reduction performance.
Collapse
|
8
|
Gu Y, Wei J, Wu X, Liu X. A study on improving the current density performances of CO 2 electrolysers. Sci Rep 2021; 11:11136. [PMID: 34045556 PMCID: PMC8159929 DOI: 10.1038/s41598-021-90581-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/04/2021] [Indexed: 11/09/2022] Open
Abstract
Electrochemical CO2 reduction reaction (CO2RR) technology can reduce CO2 emission with converting excess electrical energy to high-value-added chemicals, which however needs further improvement on the electrolyser cell performance. In this work, extensive factors were explored in continuous CO2 electrolysers. Gold, one of the benchmark materials for CO2RR to produce CO, was used as the catalyst. Electrolyser configurations and membrane types have significant influences on cell performance. Compact MEA-constructed gas-phase electrolyser showed better catalytic performance and lower energy consumption. The gas diffusion electrode with a 7:1 mass ratio of total-catalyst-to-polytetrafluoroethylene (PTFE) ionomer exhibited the best performance. At a low total cell voltage of 2.2 V, the partial current density of CO production achieved 196.8 mA cm−2, with 90.6% current efficiency and 60.4% energy efficiency for CO producing respectively. Higher CO selectivity can be achieved using anion exchange membranes, while higher selectivity for hydrogen and formate products can be achieved with cation exchange membranes. This research has pointed out a way on how to improve the CO2RR catalytic performance in flow cells, leaving aside the characteristics of the catalyst itself.
Collapse
Affiliation(s)
- Yueyuan Gu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jucai Wei
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xu Wu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Xiaoteng Liu
- Department of Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK.
| |
Collapse
|