1
|
Liu X, Ling Y, Sun C, Shi H, Zheng H, Song C, Gao K, Dang C, Sun N, Xuan Y, Ding Y. Efficient solar-driven CO 2-to-fuel conversion via Ni/MgAlO x @SiO 2 nanocomposites at low temperature. FUNDAMENTAL RESEARCH 2024; 4:131-139. [PMID: 38933849 PMCID: PMC11197776 DOI: 10.1016/j.fmre.2022.04.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/14/2022] [Accepted: 04/17/2022] [Indexed: 11/28/2022] Open
Abstract
Solar-driven CO2-to-fuel conversion assisted by another major greenhouse gas CH4 is promising to concurrently tackle energy shortage and global warming problems. However, current techniques still suffer from drawbacks of low efficiency, poor stability, and low selectivity. Here, a novel nanocomposite composed of interconnected Ni/MgAlO x nanoflakes grown on SiO2 particles with excellent spatial confinement of active sites is proposed for direct solar-driven CO2-to-fuel conversion. An ultrahigh light-to-fuel efficiency up to 35.7%, high production rates of H2 (136.6 mmol min-1g- 1) and CO (148.2 mmol min-1g-1), excellent selectivity (H2/CO ratio of 0.92), and good stability are reported simultaneously. These outstanding performances are attributed to strong metal-support interactions, improved CO2 absorption and activation, and decreased apparent activation energy under direct light illumination. MgAlO x @SiO2 support helps to lower the activation energy of CH* oxidation to CHO* and improve the dissociation of CH4 to CH3* as confirmed by DFT calculations. Moreover, the lattice oxygen of MgAlO x participates in the reaction and contributes to the removal of carbon deposition. This work provides promising routes for the conversion of greenhouse gasses into industrially valuable syngas with high efficiency, high selectivity, and benign sustainability.
Collapse
Affiliation(s)
- Xianglei Liu
- School of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Yueyue Ling
- School of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Chen Sun
- School of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Hang Shi
- School of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Hangbin Zheng
- School of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Chao Song
- School of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Ke Gao
- School of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Chunzhuo Dang
- School of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Nan Sun
- School of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Yimin Xuan
- School of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Yulong Ding
- Birmingham Centre for Energy Storage, School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
2
|
Yahyavi SR, Moradi G. Evaluation of promoted Ni-based nanocatalysts in wall-coated microchannel reactor on the dry reforming of methane and effect of ultrasound waves on physiochemical properties of synthesized nanocatalysts. INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING 2022. [DOI: 10.1515/ijcre-2022-0133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The deactivation of nickel catalysts in the dry reforming of methane (DRM) process has been one of the issues of interest to researchers. In this research, the effect of active phase and support promoter uses and synthesis method on synthesized Ni–Co/Al2O3–MgO nanocatalysts efficiency in wall coated microreactor on dry reforming of methane process studied. To determine the characteristics of the synthesized samples, XRD, BET, FESEM, and Ft-IR analyses have been performed. Analyses show that the use of ultrasound waves in the synthesis of catalysts improves the catalyst surface morphology so that about 82% of the particles of the synthesized sample are smaller than 100 nm and , increases the specific surface area to an average of 10%, and makes its structure smaller. Also, the total pore volume on the surface of the samples also shows a 10% increase. The use of promoters increases the catalyst activity and makes it more stable up to 18 h on stream. The use of a wall-coated microreactor improves heat transfer, easier access of reactants to active sites, no pressure drop, and higher activity than a conventional U-type fixed bed reactor. Nanocatalysts with Ni/Co = 5 and Al/Mg = 5 has shown the highest and most stable activity throughout the temperature range in the DRM process.
Collapse
Affiliation(s)
- Seied Reza Yahyavi
- Catalyst Research Center, Faculty of Chemical and Petroleum Engineering , Razi University , Kermanshah , Iran
| | - Gholamreza Moradi
- Catalyst Research Center, Faculty of Chemical and Petroleum Engineering , Razi University , Kermanshah , Iran
| |
Collapse
|
3
|
Shi Y, Han K, Wang F. Ni-Cu Alloy Nanoparticles Confined by Physical Encapsulation with SiO 2 and Chemical Metal-Support Interaction with CeO 2 for Methane Dry Reforming. Inorg Chem 2022; 61:15619-15628. [PMID: 36129231 DOI: 10.1021/acs.inorgchem.2c02466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fabrication of sintering- and carbon-free Ni catalysts for methane dry reforming (MDR), which is attractive to upgrade greenhouse gases CH4 and CO2, is challenging. In this work, we innovatively synthesized Ni-Cu alloy nanoparticles confined by physical encapsulation and chemical metal-support interaction (MSI); the synergism of alloy effect, size effect, MSI, and confinement effect in the catalysts gave high rates of CH4 and CO2 of 6.98 and 7.16 mmol/(gNis), respectively, at 1023 K for 50 h. The rates were 2-3 times enhanced compared to those in the literature. XRD, TEM, H2-TPR, and so forth revealed that the alloy effect, size effect, and MSI of Ni-Cu and CeO2 enhanced the MDR activity; MSI promoted the ceria surface lattice oxygen mobility and generated more oxygen vacancies, almost completely gasifying carbon deposits; chemical confinement from MSI and physical confinement from SiO2 nanospheres realized sintering-free alloys and CeO2 nanoparticles. The synergistic approach provides a universal strategy for sintering- and carbon-free Ni catalyst design for MDR reaction.
Collapse
Affiliation(s)
- Yu Shi
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 202123, China
| | - Kaihang Han
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 202123, China
| | - Fagen Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 202123, China.,Chinese Academy of Sciences Key Laboratory of Renewable Energy, Guangzhou 510640, China
| |
Collapse
|
4
|
Han K, Wang S, Hu N, Shi W, Wang F. Alloying Ni-Cu Nanoparticles Encapsulated in SiO 2 Nanospheres for Synergistic Catalysts in CO 2 Reforming with Methane Reaction. ACS APPLIED MATERIALS & INTERFACES 2022; 14:23487-23495. [PMID: 35576615 DOI: 10.1021/acsami.2c03757] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this work, we studied CO2 reforming with the methane (CRM) reaction over Ni-Cu alloy nanoparticles encapsulated in SiO2 nanospheres, for which combinational functions of alloy effect, size effect, metal-support interaction, and confinement effect exhibited high performance, good sintering resistance, and trace carbon deposition in CRM. The appropriate Cu-addition catalysts 0.2Cu-Ni@SiO2 and 0.5Cu-Ni@SiO2 had smaller NiCu alloy nanoparticles and a stronger metal-support interaction, exhibiting a better performance than the excessive Cu-addition catalysts 1.5Cu-Ni@SiO2 and 3Cu-Ni@SiO2 having Cu clusters and a weaker metal-support interaction. The best synergy of alloy effect, size effect, confinement effect, and metal-support interaction in the 0.5Cu-Ni@SiO2 catalyst contributed to the highest rates of CH4 and CO2 in CRM reported so far. This work demonstrates the importance of appropriate Cu addition in Ni-Cu@SiO2 catalysts, and the synergy for perfectly resolving sintering and carbon deposition in CRM.
Collapse
Affiliation(s)
- Kaihang Han
- School of Chemistry and Chemical Engineering, Jiangsu University, 212013 Zhenjiang, China
- Chinese Academy of Sciences Key Laboratory of Renewable Energy, Guangzhou 510640, China
| | - Shuo Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, 212013 Zhenjiang, China
| | - Nan Hu
- School of Chemistry and Chemical Engineering, Jiangsu University, 212013 Zhenjiang, China
| | - Weidong Shi
- School of Chemistry and Chemical Engineering, Jiangsu University, 212013 Zhenjiang, China
| | - Fagen Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, 212013 Zhenjiang, China
- Chinese Academy of Sciences Key Laboratory of Renewable Energy, Guangzhou 510640, China
| |
Collapse
|
5
|
Al-Fatesh AS, Kumar R, Kasim SO, Ibrahim AA, Fakeeha AH, Abasaeed AE, Atia H, Armbruster U, Kreyenschulte C, Lund H, Bartling S, Ahmed Mohammed Y, Albaqmaa YA, Lanre MS, Chaudhary ML, Almubaddel F, Chowdhury B. Effect of Cerium Promoters on an MCM-41-Supported Nickel Catalyst in Dry Reforming of Methane. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03163] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ahmed Sadeq Al-Fatesh
- Chemical Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | - Rawesh Kumar
- Department of Chemistry, Indus University, Ahmedabad, Gujarat 382115, India
| | - Samsudeen Olajide Kasim
- Chemical Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | - Ahmed Aidid Ibrahim
- Chemical Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | - Anis Hamza Fakeeha
- Chemical Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | - Ahmed Elhag Abasaeed
- Chemical Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | - Hanan Atia
- Leibniz Institute for Catalysis, Albert Einstein-Strasse 29A, Rostock 18059, Germany
| | - Udo Armbruster
- Leibniz Institute for Catalysis, Albert Einstein-Strasse 29A, Rostock 18059, Germany
| | - Carsten Kreyenschulte
- Leibniz Institute for Catalysis, Albert Einstein-Strasse 29A, Rostock 18059, Germany
| | - Henrik Lund
- Leibniz Institute for Catalysis, Albert Einstein-Strasse 29A, Rostock 18059, Germany
| | - Stephan Bartling
- Leibniz Institute for Catalysis, Albert Einstein-Strasse 29A, Rostock 18059, Germany
| | - Yahya Ahmed Mohammed
- Chemical Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | - Yousef Abdulrahman Albaqmaa
- Chemical Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | - Mahmud Sofiu Lanre
- Chemical Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | | | - Fahad Almubaddel
- Chemical Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | - Biswajit Chowdhury
- Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India
| |
Collapse
|
6
|
Xiao Z, Hou F, Zhang J, Zheng Q, Xu J, Pan L, Wang L, Zou J, Zhang X, Li G. Methane Dry Reforming by Ni-Cu Nanoalloys Anchored on Periclase-Phase MgAlO x Nanosheets for Enhanced Syngas Production. ACS APPLIED MATERIALS & INTERFACES 2021; 13:48838-48854. [PMID: 34613699 DOI: 10.1021/acsami.1c14918] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Stable and efficient syngas production via methane dry reforming is highly desirable as it utilizes two greenhouse gases simultaneously. In this work, active Ni-Cu nanoalloys stably anchored on periclase-phase MgAlOx nanosheets were successfully synthesized by a hydrothermal method. These highly dispersed small Ni-Cu alloys strongly interacted with the periclase-phase MgAlOx nanosheets, on which abundant base sites were accessible. On the optimal catalyst (6Ni6CuMgAl-S), methane and carbon dioxide conversion always reached 85 and 90% at 700 °C under a gas hour speed velocity of 40,000 mL/gcat h for more than 70 h. The hydrogen production rate was maintained at 1.8 mmol/min, and the ratio of H2/CO was kept at approximately 0.96 under a CH4 and CO2 flow rate of 25 mL/min. Coke deposition and Ni sintering were effectively suppressed by the formation of a Ni-Cu alloy, the laminar structure, and the periclase phase of the MgAlOx support. Moreover, the alloy nanoparticles were reconstructed into a segregated Ni-Cu alloy structure in response to the reaction environment, and this structure was more stable and still active. Density functional theory calculations showed that carbon adsorption was inhibited on the segregated Ni-Cu alloy. Furthermore, the experimental thermogravimetric and O2-TPO results confirmed the significant decrease in carbon deposition on the Ni-Cu alloy catalysts.
Collapse
Affiliation(s)
- Zhourong Xiao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Fang Hou
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Junjie Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Qiancheng Zheng
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Jisheng Xu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Lun Pan
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Li Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Jijun Zou
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Xiangwen Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Guozhu Li
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|
7
|
Yang M, Wang Y, Zhang R, Liu T, Xia L, Chen Z, Fang X, Xu X, Xu J, Wang X. Ni/LaBO3 (B = Al, Cr, Fe) Catalysts for Steam Reforming of Methane (SRM): On the Interaction Between Ni and LaBO3 Perovskites with Differed Fine Structures. CATALYSIS SURVEYS FROM ASIA 2021. [DOI: 10.1007/s10563-021-09343-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Saelee T, Lerdpongsiripaisarn M, Rittiruam M, Somdee S, Liu A, Praserthdam S, Praserthdam P. Experimental and computational investigation on underlying factors promoting high coke resistance in NiCo bimetallic catalysts during dry reforming of methane. Sci Rep 2021; 11:519. [PMID: 33436936 PMCID: PMC7804276 DOI: 10.1038/s41598-020-80287-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 12/17/2020] [Indexed: 11/08/2022] Open
Abstract
Global warming remains one of the greatest challenges. One of the most prominent solutions is to close the carbon cycle by utilizing the greenhouse gas: CO2, and CH4, as a feedstock via the dry reforming of methane (DRM). This work provided an insight into how the NiCo bimetallic catalyst can perform with high stability against coking during DRM compared to the Ni and Co monometallic catalysts, in which the experimental and computational techniques based on density functional theory were performed. It was found that the high stability against coking found on the NiCo surface can be summarized into two key factors: (1) the role of Co weakening the bond between a Ni active site and coke (2) significantly high surface coke diffusion rate on NiCo. Moreover, the calculation of the surface fraction weighted rate of coke diffusion which modeled the real NiCo particle into four regions: Ni-dominant, Co-dominant, NiCo-dominant, and the mixed region consisting a comparable amount of the former there regions, have shown that the synthesis of a NiCo particle should be dominated with NiCo region while keeping the Ni-dominant, and Co-dominant regions to be as low as possible to facilitate coke diffusion and removal. Thus, to effectively utilize the coke-resistant property of NiCo catalyst for DRM, one should together combine its high coke diffusion rate with coke removal mechanisms such as oxidation or hydrogenation, especially at the final diffusion site, to ensure that there will not be enough coke at the final site that will cause back-diffusion.
Collapse
Affiliation(s)
- Tinnakorn Saelee
- High-Performance Computing Unit (CECC-HCU), Center of Excellence On Catalysis and Catalytic Reaction Engineering (CECC), Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence On Catalysis and Catalytic Reaction Engineering (CECC), Chulalongkorn University, Bangkok, 10330, Thailand
| | - Mongkol Lerdpongsiripaisarn
- High-Performance Computing Unit (CECC-HCU), Center of Excellence On Catalysis and Catalytic Reaction Engineering (CECC), Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence On Catalysis and Catalytic Reaction Engineering (CECC), Chulalongkorn University, Bangkok, 10330, Thailand
| | - Meena Rittiruam
- High-Performance Computing Unit (CECC-HCU), Center of Excellence On Catalysis and Catalytic Reaction Engineering (CECC), Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence On Catalysis and Catalytic Reaction Engineering (CECC), Chulalongkorn University, Bangkok, 10330, Thailand
| | - Siriwimol Somdee
- High-Performance Computing Unit (CECC-HCU), Center of Excellence On Catalysis and Catalytic Reaction Engineering (CECC), Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence On Catalysis and Catalytic Reaction Engineering (CECC), Chulalongkorn University, Bangkok, 10330, Thailand
| | - Anchittha Liu
- Center of Excellence On Catalysis and Catalytic Reaction Engineering (CECC), Chulalongkorn University, Bangkok, 10330, Thailand
| | - Supareak Praserthdam
- High-Performance Computing Unit (CECC-HCU), Center of Excellence On Catalysis and Catalytic Reaction Engineering (CECC), Chulalongkorn University, Bangkok, 10330, Thailand.
- Center of Excellence On Catalysis and Catalytic Reaction Engineering (CECC), Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Piyasan Praserthdam
- Center of Excellence On Catalysis and Catalytic Reaction Engineering (CECC), Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
9
|
Xue Y, Xu L, Chen M, Wu CE, Cheng G, Wang N, Hu X. Constructing Ni-based confinement catalysts with advanced performances toward the CO 2 reforming of CH 4: state-of-the-art review and perspectives. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01039e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The concept of Ni-based confinement catalysts has been proposed and developed to address the challenge of the thermal sintering of metallic Ni active sites during CRM by the space and/or lattice confinement effects.
Collapse
Affiliation(s)
- Yingying Xue
- Collaborative Innovation Centre of the Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, 210044, Nanjing, P.R. China
| | - Leilei Xu
- Collaborative Innovation Centre of the Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, 210044, Nanjing, P.R. China
| | - Mindong Chen
- Collaborative Innovation Centre of the Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, 210044, Nanjing, P.R. China
| | - Cai-e Wu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, P.R. China
| | - Ge Cheng
- Collaborative Innovation Centre of the Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, 210044, Nanjing, P.R. China
| | - Ning Wang
- Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, P.R. China
| | - Xun Hu
- School of Material Science and Engineering, University of Jinan, Jinan, 250022, P.R. China
| |
Collapse
|
10
|
Syngas Production via Methane Dry Reforming over La-Ni-Co and La-Ni-Cu Catalysts with Spinel and Perovskite Structures. BULLETIN OF CHEMICAL REACTION ENGINEERING & CATALYSIS 2020. [DOI: 10.9767/bcrec.15.3.9295.885-897] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this paper, the catalytic properties of La-Ni-M (M = Co, Cu) based materials in dry reforming of methane (DRM) for syngas (CO + H2) production, were studied in the temperature range 773−1073 K. The LaNi0.9M0.1O3 and La2Ni0.9M0.1O4 (M = Co, Cu and Ni/M = 0.9/0.1) catalysts were prepared by partial substitution of Ni by Co or Cu using sol-gel method then characterized by XRD, H2-TPR and N2 physisorption. The XRD analysis of fresh catalysts showed, in the case of Co-substitution, the formation of La-Ni and La-Co perovskite and spinel structures, while only LaNiO3 and La2NiO4 phases were observed for the Cu-substituted samples. The substitution of these two structures by copper decreases the reduction temperature compared to cobalt. The reactivity results showed that the partial substitution of nickel by copper decreases the methane activation temperature, whereas a better stability of catalytic activity and syngas production was obtained via the cobalt-substituted catalysts, which is due to a synergistic effect between Ni and Co. The TPO analysis carried out on the spent catalysts indicated that the lowest carbon deposition was obtained for the cobalt substituted samples. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Collapse
|
11
|
Wang F, Han K, Yu W, Zhao L, Wang Y, Wang X, Yu H, Shi W. Low Temperature CO 2 Reforming with Methane Reaction over CeO 2-Modified Ni@SiO 2 Catalysts. ACS APPLIED MATERIALS & INTERFACES 2020; 12:35022-35034. [PMID: 32644767 DOI: 10.1021/acsami.0c09371] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Developing high performance catalysts for the low temperature CO2 reforming with methane (CRM) reaction is a challenge due to the occurrences of metal sintering and carbon deposition. In this study, we synthesized CeO2 modified Ni@SiO2 catalysts with excellent properties of sintering-resistance and low carbon deposition for high performance low temperature CRM. The Ni@SiO2-CeO2 catalysts displayed a size effect from tiny Ni nanoparticles to enhance CRM performance and a confinement effect from silica encapsulation to limit Ni sintering and exhibited oxygen storage capacity from ceria to reduce carbon deposition. Performance and characterization results revealed that the Ni@SiO2-CeO2-W catalyst with smaller ceria size exhibited higher performance and lower carbon deposition than the Ni@SiO2-CeO2-E catalyst with bigger ceria size, because the smaller ceria nanoparticles activated more CO2. This work provided a simple strategy to deposit small sized ceria on the Ni@SiO2 catalyst surface for the performance enhancement of low temperature CRM.
Collapse
Affiliation(s)
- Fagen Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China
| | - Kaihang Han
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Weishu Yu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Long Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yan Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaojun Wang
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Hao Yu
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Weidong Shi
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
12
|
Han B, Zhao L, Wang F, Xu L, Yu H, Cui Y, Zhang J, Shi W. Effect of Calcination Temperature on the Performance of the Ni@SiO2 Catalyst in Methane Dry Reforming. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01213] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bolin Han
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Long Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Fagen Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
- Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Leilei Xu
- School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Hao Yu
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Yi Cui
- Vacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Jianming Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Weidong Shi
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
13
|
Wang Y, Wang F, Han K, Shi W, Yu H. Ultra-small CeO2 nanoparticles supported on SiO2 for indoor formaldehyde oxidation at low temperature. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00988a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ultra-small CeO2 nanocrystals with a size of 2.5 nm were synthesized for high efficiency HCHO oxidation at low temperature.
Collapse
Affiliation(s)
- Yan Wang
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| | - Fagen Wang
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- China
- College of Chemistry and Molecular Engineering
| | - Kaihang Han
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| | - Weidong Shi
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| | - Hao Yu
- College of Chemical and Environmental Engineering
- Shandong University of Science and Technology
- Qingdao 266590
- China
| |
Collapse
|