1
|
Leite RR, Colombo R, Moreira AJ, Farias JM, Eduardo Bimbi Júnior F, Lima JB, Roberto de Vasconcelos Lanza M, da Silva Barud H, Basso Bernardi MI. Sustainable photocatalytic degradation of antibiotic norfloxacin using microfibrillated cellulose@ZnO nanocomposites. CHEMOSPHERE 2024; 369:143888. [PMID: 39638130 DOI: 10.1016/j.chemosphere.2024.143888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 11/24/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Antibiotics from the fluoroquinolone class, such as norfloxacin (NOR), are emerging contaminants with significant environmental and human health impacts. Their safe degradation from water remains a global challenge due to their persistence, lack of biodegradability, and ability to induce resistant bacteria. To the best of our knowledge, for the first time, this work reports the development of highly efficient photocatalytic degradation of NOR using environmentally friendly microfibrillated cellulose@ZnO (MFC@ZnO) photocatalysts. Immobilization of ZnO nanoparticles on MFC has played a crucial role in controlling the particle dimensions of ZnO, keeping them around tens of nanometers. The impact of radiation (UV-A, UV-C, and simulated solar light) on NOR degradation efficiency was investigated. Additionally, the effects of catalyst dosage (0.125-0.5 g L⁻1), NOR concentration (5-20 mg L⁻1), and degradation pH (pH = 5 to 10) were investigated. LC-MS was used to identify degradation intermediates. The results showed over 94% degradation in 40 min via UV-Vis and 90% in 10 min via HPLC, and recyclability tests indicated MFC0.1@ZnO composites can maintain over 95% NOR degradation efficiency after five consecutive 60-min cycles. The highest NOR degradation efficiency was achieved in a significantly reduced time among metal oxide semiconductors (MOS)-based photocatalysts, thus opening new perspectives for the development of eco-friendly photocatalysts, especially towards emerging pollutant degradation.
Collapse
Affiliation(s)
- Ramon Resende Leite
- Sao Carlos Institute of Physics, University of Sao Paulo, 13563-120, Sao Carlos, SP, Brazil.
| | - Renata Colombo
- School of Arts, Sciences and Humanities, University of Sao Paulo, 03828-000, Sao Paulo, SP, Brazil
| | - Ailton José Moreira
- Institute of Chemistry, Sao Paulo State University (UNESP), 14800-060, Araraquara, SP, Brazil
| | - Júlia Mendes Farias
- Sao Carlos Institute of Physics, University of Sao Paulo, 13563-120, Sao Carlos, SP, Brazil
| | | | - Juliana Bruzaca Lima
- Institute of Chemistry, Sao Paulo State University (UNESP), 14800-060, Araraquara, SP, Brazil
| | | | - Hernane da Silva Barud
- Biopolymers and Biomaterials Laboratory (BioPolMat), University of Araraquara, 14801-320, Araraquara, SP, Brazil
| | | |
Collapse
|
2
|
El Golli A, Losa D, Gioia C, Fendrich M, Bajpai OP, Jousson O, Orlandi M, Miotello A. Advancing solar wastewater treatment: A photocatalytic process via green ZnO/g-C 3N 4 coatings and concentrated sunlight - Comprehensive insights into ciprofloxacin antibiotic inactivation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123178. [PMID: 39531771 DOI: 10.1016/j.jenvman.2024.123178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/14/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
In this study, a sustainable method employing concentrated sunlight to achieve environmental remediation of wastewater, contaminated by Ciprofloxacin antibiotic (CIP), is thoroughly investigated. A green ZnO/g-C3N4 nanocomposite (NC) is used as a photocatalyst coating on glass to investigate the inactivation of CIP in water, in a flow-reactor configuration at small-prototype scale (10 liters/h, catalyst area 187.5 cm2). ZnO/g-C3N4 NC coatings were obtained by an in-situ thermal condensation process coupled with a green synthesis protocol and deposited on glass, via a simple drop casting method. Morphological and structural analyses of synthesized composites were performed with Fourier-Transform Infrared (FTIR) Spectroscopy, Scanning Electron Microscopy (SEM), Energy-Dispersive X-ray (EDX) and X-ray diffraction (XRD) techniques, while optical properties were studied with Diffuse Reflectance Spectroscopy (DRS). The degradation of CIP was first tested at a lab scale under simulated sunlight and then studied under sunlight in a parabolic trough concentrator (PTC). Suitable degradation of CIP (100%) was observed at 210 min via High-Performance Liquid Chromatography (HPLC) and the by-products were determined by Liquid Chromatography-Mass Spectroscopy (LC-MS). Microbiological tests revealed the absence of antibacterial activity in CIP water treated with ZnO/g-C3N4 NC photocatalyst against Staphylococcus aureus, Pseudomonas aeruginosa, and Priestia megaterium. Our results directly demonstrate the effective inactivation of CIP with a process designed for sustainability both in terms of energy input (solar) and scalability of materials. Also, the small-prototype scale of this investigation provides insights into the challenges arising from the perspective scale-up to an industrial application, aimed at antibiotics inactivation in wastewater and thus helping to prevent the spread of antimicrobial resistance (AMR).
Collapse
Affiliation(s)
- Asma El Golli
- Physics Department, University of Trento, via Sommarive 14, 38123, Povo, Trento, Italy
| | - Davide Losa
- Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, via Sommarive 9, 38123, Povo, Trento, Italy
| | - Claudio Gioia
- Physics Department, University of Trento, via Sommarive 14, 38123, Povo, Trento, Italy
| | - Murilo Fendrich
- Physics Department, University of Trento, via Sommarive 14, 38123, Povo, Trento, Italy
| | - Om Prakash Bajpai
- Physics Department, University of Trento, via Sommarive 14, 38123, Povo, Trento, Italy
| | - Olivier Jousson
- Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, via Sommarive 9, 38123, Povo, Trento, Italy
| | - Michele Orlandi
- Physics Department, University of Trento, via Sommarive 14, 38123, Povo, Trento, Italy.
| | - Antonio Miotello
- Physics Department, University of Trento, via Sommarive 14, 38123, Povo, Trento, Italy
| |
Collapse
|
3
|
Yadav L, Sharma M, Laddha H, Agarwal M, Gupta R. Insight into efficient photocatalytic degradation of norfloxacin over a simple, economical biochar-based magnetic photocatalyst under solar illumination: a statistical and experimental approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:60971-60987. [PMID: 39400670 DOI: 10.1007/s11356-024-35275-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 10/07/2024] [Indexed: 10/15/2024]
Abstract
The transformation of residual agricultural solid waste into an efficient value-added carbon product has been an ongoing strategy for solid waste management and a sustainable economy. Meanwhile, the upsurgence of antibiotic contamination in water bodies due to their inadvertent use poses a serious threat to human health and leads to antimicrobial resistance. Hence, to neutralize two evils in one stroke simultaneously, a simple, easy, and cost-effective pea shell-based magnetic photocatalyst (PSMC) has been synthesized and characterized by XRD (X-ray diffraction), VSM (vibrating sample magnetometer), XPS (X-ray photoelectron spectroscopy), TGA (thermogravimetric analysis), and FTIR (Fourier-transform infrared) spectroscopy techniques. Batch experimental studies revealed that PSMC efficiently eliminates norfloxacin (91.3%) within 180 min from wastewater and mineralizes it into innocuous products at optimum parameters of norfloxacin concentration of 20 mg/L, catalyst dosage of 15 mg, and pH 3.5. Additionally, statistical parameters for the photodegradation of NX obtained from ANOVA by applying the Box-Behnken design are in close agreement with batch experiment parameters. PSMC has surplus advantages of facile recovery for recycling up to seven consecutive cycles by an external magnet and efficacy in natural solar light, making it cost-effective and economical. Radical scavenging studies revealed that O2•- and OH• were the potent reactive species in the photocatalytic degradation process.
Collapse
Affiliation(s)
- Lalita Yadav
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur, 302017, India
| | - Manish Sharma
- Materials Research Centre, Malaviya National Institute of Technology Jaipur, Jaipur, 302017, India
| | - Harshita Laddha
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur, 302017, India
| | - Madhu Agarwal
- Department of Chemical Engineering, Malaviya National Institute of Technology Jaipur, Jaipur, 302017, India
| | - Ragini Gupta
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur, 302017, India.
- Materials Research Centre, Malaviya National Institute of Technology Jaipur, Jaipur, 302017, India.
| |
Collapse
|
4
|
Yakamercan E, Aygün A, Simsek H. Antibiotic ciprofloxacin removal from aqueous solutions by electrochemically activated persulfate process: Optimization, degradation pathways, and toxicology assessment. J Environ Sci (China) 2024; 143:85-98. [PMID: 38644026 DOI: 10.1016/j.jes.2023.08.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 08/13/2023] [Accepted: 08/13/2023] [Indexed: 04/23/2024]
Abstract
Ciprofloxacin (CIP) is a commonly used antibiotic in the fluoroquinolone group and is widely used in medical and veterinary medicine disciplines to treat bacterial infections. When CIP is discharged into the sewage system, it cannot be removed by a conventional wastewater treatment plant because of its recalcitrant characteristics. In this study, boron-doped diamond anode and persulfate were used to degrade CIP in an aquatic solution by creating an electrochemically activated persulfate (EAP) process. Iron was added to the system as a coactivator and the process was called EAP+Fe. The effects of independent variables, including pH, Fe2+, persulfate concentration, and electrolysis time on the system were optimized using the response surface methodology. The results showed that the EAP+Fe process removed 94% of CIP under the following optimum conditions: A pH of 3, persulfate/Fe2+ concentration of 0.4 mmol/L, initial CIP concentration 30 mg/L, and electrolysis time of 12.64 min. CIP removal efficiency was increased from 65.10% to 94.35% by adding Fe2+ as a transition metal. CIP degradation products, 7 pathways, and 78 intermediates of CIP were studied, and three of those intermediates (m/z 298, 498, and 505) were reported. The toxicological analysis based on toxicity estimation software results indicated that some degradation products of CIP were toxic to targeted animals, including fathead minnow, Daphnia magna, Tetrahymena pyriformis, and rats. The optimum operation costs were similar in EAP and EAP+Fe processes, approximately 0.54 €/m3.
Collapse
Affiliation(s)
- Elif Yakamercan
- Environmental Engineering Department, Bursa Technical University, Bursa, Turkey
| | - Ahmet Aygün
- Environmental Engineering Department, Bursa Technical University, Bursa, Turkey.
| | - Halis Simsek
- Agricultural and Biological Engineering Department, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
5
|
Chauhan A, Agnihotri S, Vasundhara M. Enhanced solar light-driven photocatalysis of norfloxacin using Fe-doped TiO 2: RSM optimization, DFT simulations, and toxicity study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:47991-48013. [PMID: 39017867 DOI: 10.1007/s11356-024-34080-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/18/2024] [Indexed: 07/18/2024]
Abstract
This study investigates the photocatalytic degradation of norfloxacin (NFX) utilizing Fe-doped TiO2 nanocomposite under natural sunlight. TiO2-based photocatalysts were synthesized using chemical precipitation varying Fe-dopant concentration and characterized in detail. Theoretical modelling, centred on density functional theory (DFT), elucidated that Fe ions within the TiO2 lattice are effectively confined, thereby narrowing the wide band gap of TiO2. The findings strongly support that Fe3+ ions augmented the photocatalytic activity of TiO2 by facilitating an intermediate interfacial route for electron and hole transfer, particularly up to an optimal dopant concentration of 1.5 M%. Subsequently, a three-level Box-Behnken design (BBD) was developed to determine the initial pH, optimal catalyst concentration, and drug dosage. High-performance liquid chromatography-mass spectrometry (HPLC-MS) was employed to identify reaction intermediates, thereby establishing a potential degradation pathway. Notably, sustained recyclability was achieved, with 82% degradation efficiency maintained over five cycles. Additionally, the toxicity of degradation intermediates was evaluated through bacterial and phytotoxicity tests, affirming the environmental safety of treated water. In vitro toxicity of the nanomaterial was also examined, emphasizing its environmental implications. Scavenger experiments revealed that hole and hydroxyl radicals were the primary active species in Fe-TiO2-based photocatalysis. Furthermore, the antibacterial potential of the synthesized catalyst was assessed using Escherichia coli and Staphylococcus aureus to observe their respective antibacterial responses.
Collapse
Affiliation(s)
- Anjali Chauhan
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Bhadson Road, Patiala, 147004, Punjab, India
| | - Shekhar Agnihotri
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat, Haryana, 131028, India.
- Centre for Advanced Translational Research in Food Nano-Biotechnology (CATR-FNB), National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat, Haryana, 131028, India.
| | - Mondem Vasundhara
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Bhadson Road, Patiala, 147004, Punjab, India
| |
Collapse
|
6
|
Singh PP, Pandey G, Murti Y, Gairola J, Mahajan S, Kandhari H, Tivari S, Srivastava V. Light-driven photocatalysis as an effective tool for degradation of antibiotics. RSC Adv 2024; 14:20492-20515. [PMID: 38946773 PMCID: PMC11208907 DOI: 10.1039/d4ra03431g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 06/22/2024] [Indexed: 07/02/2024] Open
Abstract
Antibiotic contamination has become a severe issue and a dangerous concern to the environment because of large release of antibiotic effluent into terrestrial and aquatic ecosystems. To try and solve these issues, a plethora of research on antibiotic withdrawal has been carried out. Recently photocatalysis has received tremendous attention due to its ability to remove antibiotics from aqueous solutions in a cost-effective and environmentally friendly manner with few drawbacks compared to traditional photocatalysts. Considerable attention has been focused on developing advanced visible light-driven photocatalysts in order to address these problems. This review provides an overview of recent developments in the field of photocatalytic degradation of antibiotics, including the doping of metals and non-metals into ultraviolet light-driven photocatalysts, the formation of new semiconductor photocatalysts, the advancement of heterojunction photocatalysts, and the building of surface plasmon resonance-enhanced photocatalytic systems.
Collapse
Affiliation(s)
- Praveen P Singh
- Department of Chemistry, United College of Engineering & Research Prayagraj U.P.-211010 India
| | - Geetika Pandey
- Department of Physics, Faculty of Science, United University Prayagraj-211012 India
| | - Yogesh Murti
- Institute of Pharmaceutical Research, GLA University Mathura-281406 India
| | - Jagriti Gairola
- School of Pharmacy, Graphic Era Hill University Clement Town Dehradun 248002 Uttarakhand India
- Department of Allied Sciences, Graphic Era (Deemed to be University) Clement Town Dehradun 248002 Uttarakhand India
| | - Shriya Mahajan
- Centre of Research Impact and Outcome, Chitkara University Rajpura-140417 Punjab India
| | - Harsimrat Kandhari
- Chitkara Centre for Research and Development, Chitkara University Himachal Pradesh-174103 India
| | - Shraddha Tivari
- Department of Chemistry, CMP Degree College, University of Allahabad Prayagraj U.P.-211002 India
| | - Vishal Srivastava
- Department of Chemistry, CMP Degree College, University of Allahabad Prayagraj U.P.-211002 India
| |
Collapse
|
7
|
Zhang Y, Ju S, Casals G, Tang J, Lin Y, Li X, Liang L, Jia Z, Zeng M, Casals E. Facile aqueous synthesis and comparative evaluation of TiO 2-semiconductor and TiO 2-metal nanohybrid photocatalysts in antibiotics degradation under visible light. RSC Adv 2023; 13:33187-33203. [PMID: 37954413 PMCID: PMC10636657 DOI: 10.1039/d3ra06231g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/05/2023] [Indexed: 11/14/2023] Open
Abstract
Advanced oxidation processes using TiO2-based nanomaterials are sustainable technologies that hold great promise for the degradation of many types of pollutants including pharmaceutical residues. A wide variety of heterostructures coupling TiO2 with visible-light active nanomaterials have been explored to shift its photocatalytic properties to harness sun irradiation but a systematic comparison between them is lacking in the current literature. Furthermore, the high number of proposed nanostructures with different size, morphology, and surface area, and the often complex synthesis processes hamper the transition of these materials into commercial and effective solutions for environmental remediation. Herein, we have designed a facile and cost-effective method to synthesize two heterostructured photocatalysts representative of two main families of novel structures proposed, hybrids of TiO2 with metal (Au) and semiconductor (CeO2) nanomaterials. The photocatalysts have been extensively characterized to ensure a good comparability in terms of co-catalyst doping characteristics, morphology and surface area. The photocatalytic degradation of ciprofloxacin and sulfamethoxazole as target pollutants, two antibiotics of high concern polluting water sources, has been evaluated and CeO2/TiO2 exhibited the highest activity, achieving complete antibiotic degradation at very low photocatalyst concentrations. Our study provides new insights into the development of inexpensive heterostructured photocatalysts and suggests that the non-stoichiometry and characteristic d and f electronic orbital configuration of CeO2 have a significantly improved role in the enhancement of the photocatalytic reaction.
Collapse
Affiliation(s)
- Yuping Zhang
- School of Biotechnology and Health Sciences, Wuyi University Jiangmen 529020 PR China
| | - Shijie Ju
- School of Biotechnology and Health Sciences, Wuyi University Jiangmen 529020 PR China
| | - Gregori Casals
- Biochemistry and Molecular Genetics Department, Clinical and Provincial Hospital of Barcelona Barcelona 08036 Spain
- IDIBAPS Research Center Barcelona 08036 Spain
| | - Jie Tang
- School of Biotechnology and Health Sciences, Wuyi University Jiangmen 529020 PR China
| | - Yichao Lin
- School of Biotechnology and Health Sciences, Wuyi University Jiangmen 529020 PR China
| | - Xiaofang Li
- School of Biotechnology and Health Sciences, Wuyi University Jiangmen 529020 PR China
| | - Lihua Liang
- School of Biotechnology and Health Sciences, Wuyi University Jiangmen 529020 PR China
| | - Zhiyu Jia
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology Beijing 100081 PR China
| | - Muling Zeng
- School of Biotechnology and Health Sciences, Wuyi University Jiangmen 529020 PR China
| | - Eudald Casals
- School of Biotechnology and Health Sciences, Wuyi University Jiangmen 529020 PR China
| |
Collapse
|
8
|
Nasari Z, Taherimehr M. Optimization of Visible-Light-Driven Ciprofloxacin Degradation Using a Z-Scheme Semiconductor MgFe 2O 4/UiO-67. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:14357-14373. [PMID: 37766455 DOI: 10.1021/acs.langmuir.3c01692] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
A heterogeneous photocatalyst, MgFe2O4/UiO-67 (MU-x), was successfully synthesized by doping magnetic magnesium ferrite nanoparticles (MgFe2O4) with the UiO-67 metal-organic framework at various weight ratios (MgFe2O4: UiO-67 at 30, 50, 70, and 90 wt %). Various techniques, including X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), Fourier transform infrared spectroscopy (FT-IR) , Brunauer-Emmett-Teller (BET), photoluminescence (PL), vibrating sample magnetometry (VSM), electrochemical impedance spectroscopy (EIS), and ultraviolet-visible diffuse reflectance spectroscopy (UV-vis DRS), were used to characterize the prepared photocatalysts. The photocatalytic performance of MU-x in the degradation of ciprofloxacin (CIP) under visible light was assessed. The CIP degradation efficiency was found to increase as the amount of MgFe2O4 in the composite was increased up to 70 wt %. Experimental conditions were optimized using response surface methodology (RSM) based on central composite design (CCD) with three factors: initial pH, catalyst loading, and CIP concentration. Using the obtained model, the optimal conditions were determined as follows: initial pH of 8.025, catalyst loading of 33.8 wt %, and CIP concentration of 10.8 mg/L. Under these optimal conditions, a notable improvement was achieved, with 99.62% of CIP removal achieved within 90 min, surpassing the performance of previously reported photocatalysts. Total organic carbon (TOC) analysis revealed a high degree of mineralization, at 81.25%. The degradation pathway of CIP was investigated based on liquid chromatography-mass spectrometry (LC-MS) analysis. Finally, the values of ECB and EVB of the photocatalyst were determined and the possible degradation mechanism of CIP was investigated based on Mott-Schottky and the applied scavengers. The hydroxyl radical (•OH) was identified as the dominant species in the removal of CIP through a trapping experiment. The photocatalyst with 70 wt % of MgFe2O4 (MU-70) exhibited excellent stability and recoverability with an external magnet, demonstrating 86.33% CIP removal after four cycles. According to the obtained results, MU-70 is a promising visible-light-active photocatalyst with great potential for water treatment applications and convenient recovery.
Collapse
Affiliation(s)
- Zoha Nasari
- Department of Chemistry, Faculty of Basic Sciences, Babol Noshirvani University of Technology, Babol 4714871167, Iran
| | - Masoumeh Taherimehr
- Department of Chemistry, Faculty of Basic Sciences, Babol Noshirvani University of Technology, Babol 4714871167, Iran
| |
Collapse
|
9
|
Hassan NS, Jalil AA, Fei ICM, Razak MTA, Khusnun NF, Bahari MB, Riwayati YI, Suprapto S, Prasetyoko D, Firmansyah ML, Salleh NFM, Rajendran S. Vanadia as an electron-hole recombination inhibitor on fibrous silica-titania for selective hole oxidation of ciprofloxacin and Congo red photodegradation. CHEMOSPHERE 2023; 338:139502. [PMID: 37453521 DOI: 10.1016/j.chemosphere.2023.139502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/25/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Vanadia (V2O5)-incorporated fibrous silica-titania (V/FST) catalysts, which were successfully synthesized using a hydrothermal method followed by the impregnation of V2O5. The catalysts were then characterized using numerous techniques, including X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, nitrogen adsorption-desorption analyses, ultraviolet-visible diffuse reflectance spectroscopy, Fourier-transform infrared, X-ray photoelectron spectroscopy, and photoluminescence (PL) analyses. The study found that varying the amount of V2O5 (1-10 wt%) had a significant impact on the physicochemical properties of the FST, which in turn improved the photodegradation efficiency of two organic compounds, ciprofloxacin (CIP) and congo red (CR). 5V/FST demonstrated the best performance in degrading 10 mg L-1 of CIP (83%) and CR (100%) at pH 3 using 0.375 g L-1 catalyst under visible light irradiation within 180 min. The highest photoactivity of 5V/FST is mainly due to higher crystallinity and the highest number of V2O5-FST interactions. Furthermore, as demonstrated by PL analysis, the 5V/FST catalyst has the most significant impact on interfacial charge transfer and reduces electron-hole recombination. The photodegradation of both contaminants follows the Langmuir-Hinshelwood pseudo-first-order model, according to the kinetic study. The scavenger investigation demonstrated that hydroxyl radicals and holes dominated species in the system, indicating that the catalyst effectively generated reactive species for pollutant degradation. A possible mechanism was also identified for FST and 5V/FST. Interestingly, V2O5 acts as an electron-hole recombination inhibitor on FST for selective hole oxidation of ciprofloxacin and congo red photodegradation. Finally, the degradation efficiency of the catalyst remained relatively stable even after five cyclic experiments, indicating its potential for long-term use in environmental remediation.
Collapse
Affiliation(s)
- N S Hassan
- Centre of Hydrogen Energy, Institute of Future Energy, 81310, UTM, Johor Bahru, Johor, Malaysia; Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Johor, Malaysia
| | - A A Jalil
- Centre of Hydrogen Energy, Institute of Future Energy, 81310, UTM, Johor Bahru, Johor, Malaysia; Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Johor, Malaysia.
| | - I C M Fei
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Johor, Malaysia
| | - M T A Razak
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Johor, Malaysia
| | - N F Khusnun
- Centre of Hydrogen Energy, Institute of Future Energy, 81310, UTM, Johor Bahru, Johor, Malaysia; Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Johor, Malaysia
| | - M B Bahari
- Faculty of Science, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Johor, Malaysia
| | - Y I Riwayati
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Keputih, Sukolilo, Surabaya, 60111, Indonesia
| | - S Suprapto
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Keputih, Sukolilo, Surabaya, 60111, Indonesia
| | - D Prasetyoko
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Keputih, Sukolilo, Surabaya, 60111, Indonesia
| | - M L Firmansyah
- Nanotechnology Engineering, Faculty of Advanced Technology and Multidiscipline, Airlangga University, Jl. Dr. Ir. H. Soekarno, Surabaya, 60115, Indonesia
| | - N F M Salleh
- Environmental and Occupational Health Programme, School of Health Sciences, Health Campus, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Saravanan Rajendran
- Faculty of Engineering, Department of Mechanical Engineering, University of Tarapacá, Avda, General Velasquez, 1775, Arica, Chile
| |
Collapse
|
10
|
Sharma M, Rajput D, Kumar V, Jatain I, Aminabhavi TM, Mohanakrishna G, Kumar R, Dubey KK. Photocatalytic degradation of four emerging antibiotic contaminants and toxicity assessment in wastewater: A comprehensive study. ENVIRONMENTAL RESEARCH 2023; 231:116132. [PMID: 37207734 DOI: 10.1016/j.envres.2023.116132] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 05/03/2023] [Accepted: 05/12/2023] [Indexed: 05/21/2023]
Abstract
Excessive usage and unrestricted discharge of antibiotics in the environment lead to their accumulation in the ecosystem due to their highly stable and non-biodegradation nature. Photodegradation of four most consumed antibiotics such as amoxicillin, azithromycin, cefixime, and ciprofloxacin were studied using Cu2O-TiO2 nanotubes. Cytotoxicity evaluation of the native and transformed products was conducted on the RAW 264.7 cell lines. Photocatalyst loading (0.1-2.0 g/L), pH (5, 7 and 9), initial antibiotic load (50-1000 μg/mL) and cuprous oxide percentage (5, 10 and 20) were optimized for efficient photodegradation of antibiotics. Quenching experiments to evaluate the mechanism of photodegradation with hydroxyl and superoxide radicals were found the most reactive species of the selected antibiotics. Complete degradation of selected antibiotics was achieved in 90 min with 1.5 g/L of 10% Cu2O-TiO2 nanotubes with initial antibiotic concentration (100 μg/mL) at neutral pH of water matrix. The photocatalyst showed high chemical stability and reusability up to five consecutive cycles. Zeta potential studies confirms the high stability and activity of 10% C-TAC (Cuprous oxide doped Titanium dioxide nanotubes for Applied Catalysis) in the tested pH conditions. Photoluminescence and Electrochemical Impedance Spectroscopy data speculates that 10% C-TAC photocatalyst have efficient photoexcitation in the visible light for photodegradation of antibiotics samples. Inhibitory concentration (IC50) interpretation from the toxicity analysis of native antibiotics concluded that ciprofloxacin was the most toxic antibiotic among the selected antibiotics. Cytotoxicity percentage of transformed products showed r: -0.985, p: 0.01 (negative correlation) with the degradation percentage revealing the efficient degradation of selected antibiotics with no toxic by-products.
Collapse
Affiliation(s)
- Manisha Sharma
- Department of Biotechnology, Central University of Haryana, Mahendergarh, Haryana, 123 031, India
| | - Deepanshi Rajput
- Biomanufacturing and Process Development Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110 067, India
| | - Vinod Kumar
- Special Centre for Nano Science, Jawaharlal Nehru University, New Delhi, 110 067, India
| | - Indu Jatain
- Department of Biotechnology, Central University of Haryana, Mahendergarh, Haryana, 123 031, India
| | - Tejraj M Aminabhavi
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi, 580 031, Karnataka, India
| | - Gunda Mohanakrishna
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi, 580 031, Karnataka, India
| | - Ravi Kumar
- Department of Biotechnology, Central University of Haryana, Mahendergarh, Haryana, 123 031, India
| | - Kashyap Kumar Dubey
- Biomanufacturing and Process Development Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110 067, India.
| |
Collapse
|
11
|
Dien ND, Thu Ha PT, Vu XH, Trang TT, Thanh Giang TD, Dung NT. Developing efficient CuO nanoplate/ZnO nanoparticle hybrid photocatalysts for methylene blue degradation under visible light. RSC Adv 2023; 13:24505-24518. [PMID: 37593668 PMCID: PMC10427893 DOI: 10.1039/d3ra03791f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/02/2023] [Indexed: 08/19/2023] Open
Abstract
CuO/ZnO nanocomposites with different components can overcome the drawbacks of previously used photocatalysts owing to their promotion in charge separation and transportation, light absorption, and the photo-oxidation of dyes. In this study, CuO nanoplates were synthesized by the hydrothermal method, while ZnO nanoparticles were fabricated by the precipitation method. A series of CuO/ZnO nanocomposites with different ZnO-to-CuO weight ratios, namely, 2 : 8, 4 : 6, 5 : 5, 6 : 4, and 8 : 2 were obtained via a mixing process. X-ray diffraction patterns confirmed the presence of hexagonal wurtzite ZnO and monoclinic CuO in the synthesized CuO/ZnO nanocomposites. Scanning electron microscopy showed the dispersion of ZnO nanoparticles on the surface of CuO nanoplates. Ultraviolet-visible absorption spectra exhibited a slight red-shift in the absorption edge of binary oxides relative to pure ZnO or CuO. All samples were employed for the photocatalytic degradation of methylene blue (MB) under visible light irradiation. The composite samples exhibited enhanced photocatalytic performance compared with pristine CuO or ZnO. This study aimed to examine the effect of the ZnO-to-CuO weight ratio on their photocatalytic performance. The results indicated that among all the synthesized nanocomposites and pristine oxides, the nanocomposite with ZnO and CuO in a proportion of 4 : 6 shows the highest photodegradation activity for the removal of MB with 93% MB photodegraded within 60 min at an initial MB concentration of 5 ppm. The photocatalytic kinetic data were described well by the pseudo-first-order model with a high correlation coefficient of 0.95. The photocatalytic mechanism of the mixed metal oxide was proposed and discussed in detail. The photodegradation characteristic of CuO/ZnO nanostructures is valuable for methylene blue degradation from aqueous solutions as well as environmental purification in various fields.
Collapse
Affiliation(s)
- Nguyen Dac Dien
- Faculty of Occupational Safety and Health, Vietnam Trade Union University 169 Tay Son Street, Dong Da district Ha Noi city 100000 Vietnam
| | - Pham Thi Thu Ha
- Faculty of Chemistry, TNU-University of Sciences Tan Thinh ward Thai Nguyen city 24000 Vietnam
| | - Xuan Hoa Vu
- Institute of Science and Technology, TNU-University of Sciences Tan Thinh ward Thai Nguyen city 24000 Vietnam
| | - Tran Thu Trang
- Institute of Science and Technology, TNU-University of Sciences Tan Thinh ward Thai Nguyen city 24000 Vietnam
| | - Trinh Duc Thanh Giang
- Dao Duy Tu High School Chu Van An road, Hoang Van Thu ward Thai Nguyen city 24000 Vietnam
| | - Nguyen Thi Dung
- Institute of Science and Technology, TNU-University of Sciences Tan Thinh ward Thai Nguyen city 24000 Vietnam
| |
Collapse
|
12
|
Pascariu P, Gherasim C, Airinei A. Metal Oxide Nanostructures (MONs) as Photocatalysts for Ciprofloxacin Degradation. Int J Mol Sci 2023; 24:ijms24119564. [PMID: 37298517 DOI: 10.3390/ijms24119564] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
In recent years, organic pollutants have become a global problem due to their negative impact on human health and the environment. Photocatalysis is one of the most promising methods for the removal of organic pollutants from wastewater, and oxide semiconductor materials have proven to be among the best in this regard. This paper presents the evolution of the development of metal oxide nanostructures (MONs) as photocatalysts for ciprofloxacin degradation. It begins with an overview of the role of these materials in photocatalysis; then, it discusses methods of obtaining them. Then, a detailed review of the most important oxide semiconductors (ZnO, TiO2, CuO, etc.) and alternatives for improving their photocatalytic performance is provided. Finally, a study of the degradation of ciprofloxacin in the presence of oxide semiconductor materials and the main factors affecting photocatalytic degradation is carried out. It is well known that antibiotics (in this case, ciprofloxacin) are toxic and non-biodegradable, which can pose a threat to the environment and human health. Antibiotic residues have several negative impacts, including antibiotic resistance and disruption of photosynthetic processes.
Collapse
Affiliation(s)
- Petronela Pascariu
- Petru Poni Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Carmen Gherasim
- Petru Poni Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Anton Airinei
- Petru Poni Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| |
Collapse
|
13
|
Photocatalytic Degradation of Ciprofloxacin by UV Light Using N-Doped TiO2 in Suspension and Coated Forms. Catalysts 2022. [DOI: 10.3390/catal12121663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The presence of organic compounds such as ciprofloxacin in untreated pharmaceutical wastewater often poses a serious health risk to human and aquatic life when discharged into water bodies. One of the most effective means of removing ciprofloxacin from wastewater is photocatalytic degradation. However, the synthesis of an effective photocatalyst that can degrade the organic pollutant in the wastewater is often a challenge. Hence, this study focuses on the synthesis and application of nitrogen-doped TiO2 (N-TiO2) in suspension and coated forms for the photocatalytic degradation of ciprofloxacin in wastewater by applying UV-light irradiation. The nitrogen-doped TiO2 photocatalyst was prepared by a co-precipitation process and characterized using energy-dispersive X-ray spectroscopy, scanning electron microscopy, and Fourier-transform infrared spectroscopy. The effects of the initial concentration of the ciprofloxacin (6, 12, 18, or 30 ppm), pH (3, 5, 7, or 9), and flow rate (0.4, 0.8, 0.95, or 1.5 L/min) on the degradation of the ciprofloxacin over the N-TiO2 were investigated. The results showed that the removal efficiency of ciprofloxacin was enhanced by increasing the initial ciprofloxacin concentration, while it was decreased with the increase in the feed flow rate. The best operating conditions were obtained using an initial ciprofloxacin concentration of 30 ppm, pH of 5, and feed flow rate of 0.4 L/min. Under these operating conditions, removal efficiencies of 87.87% and 93.6% were obtained for net TiO2 and N-TiO2 of 5 wt% in suspension form, respectively, while 94.5% ciprofloxacin removal efficiency was obtained using coated 5 wt% N-TiO2 after 2 h of photocatalytic degradation. Based on the response surface optimization strategy, a quadratic model was suggested to obtain mathematical expressions to predict the ciprofloxacin removal efficiency under various studied operational parameters.
Collapse
|
14
|
Wu X, Xu J, Zhu P, Liu M, Duan M, Zhang S. High performance visible light response of a Z-type Bi 2WO 6/BiOBr/RGO heterojunction photocatalyst for the degradation of norfloxacin. Dalton Trans 2022; 51:17994-18009. [PMID: 36367710 DOI: 10.1039/d2dt03038a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A Bi2WO6/BiOBr/RGO (BWO/BOB/RGO) composite photocatalyst with a Z-type heterojunction was prepared by a simple one-pot hydrothermal method, and the micro-morphology and physicochemical properties of the prepared samples were characterized. After reacting under visible light for 120 min, the degradation rate of 20 mg L-1 norfloxacin (NOR) by BWO/BOB/RGO was 95.12%, and the kinetic constant of the reaction was 6.42 times higher than that of pure BiOBr. Furthermore, BWO/BOB/RGO also shows good recycling stability and universality. The characterization results show that the improvement of the photocatalytic performance of the catalyst is mainly due to the heterojunction formed between Bi2WO6, RGO and BiOBr, which enhances the visible light absorption ability, accelerates the photogenerated electron migration and improves the electron-hole pair separation efficiency. The introduction of Bi2WO6 and RGO into the catalyst also increased its specific surface area and made it have more surface-active sites. The results of radical capture experiments showed that ˙O2- and h+ played an important role in the BWO/BOB/RGO reaction system, and the intermediate products and possible degradation pathways of the system were detected and analyzed. Furthermore, the electron transfer mechanism of the Z-type heterojunction using RGO as an electron transport medium and the mechanism of photocatalytic degradation of norfloxacin were proposed.
Collapse
Affiliation(s)
- Xiaolong Wu
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China.
| | - Jing Xu
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China.
| | - Pengfei Zhu
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China. .,Research Institute of Industrial Hazardous Waste Disposal and Resource Utilization, Southwest Petroleum University, Chengdu, Sichuan 610500, P. R. China.,Oil and Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, 610500, P.R. China
| | - Mei Liu
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China.
| | - Ming Duan
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China.
| | - Shasha Zhang
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China.
| |
Collapse
|
15
|
Semiconductors Application Forms and Doping Benefits to Wastewater Treatment: A Comparison of TiO2, WO3, and g-C3N4. Catalysts 2022. [DOI: 10.3390/catal12101218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Photocatalysis has been vastly applied for the removal of contaminants of emerging concern (CECs) and other micropollutants, with the aim of future water reclamation. As a process based upon photon irradiation, materials that may be activated through natural light sources are highly pursued, to facilitate their application and reduce costs. TiO2 is a reference material, and it has been greatly optimized. However, in its typical configuration, it is known to be mainly active under ultraviolet radiation. Thus, multiple alternative visible light driven (VLD) materials have been intensively studied recently. WO3 and g-C3N4 are currently attractive VLD catalysts, with WO3 possessing similarities with TiO2 as a metal oxide, allowing correlations between the knowledge regarding the reference catalyst, and g-C3N4 having an interesting and distinct non-metallic polymeric structure with the benefit of easy production. In this review, recent developments towards CECs degradation in TiO2 based photocatalysis are discussed, as reference catalyst, alongside the selected alternative materials, WO3 and g-C3N4. The aim here is to evaluate the different techniques more commonly explored to enhance catalyst photo-activity, specifically doping with multiple elements and the formation of composite materials. Moreover, the possible combination of photocatalysis and ozonation is also explored, as a promising route to potentialize their individual efficiencies and overcome typical drawbacks.
Collapse
|
16
|
Fauzi AA, Jalil AA, Hassan NS, Aziz FFA, Azami MS, Abdullah TAT, Kamaroddin MFA, Setiabudi HD. An intriguing Z-scheme titania loaded on fibrous silica ceria for accelerated visible-light-driven photocatalytic degradation of ciprofloxacin. ENVIRONMENTAL RESEARCH 2022; 211:113069. [PMID: 35300961 DOI: 10.1016/j.envres.2022.113069] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/02/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
A novel Z-scheme titania loaded on fibrous silica ceria (Ti-FSC) was triumphantly fabricated via hydrothermal followed by electrolysis method and evaluated for the visible-light degradation of ciprofloxacin (CIP). Noticeably, Ti-FSC exhibits as an efficient photocatalyst for CIP photodegradation with 95% as followed by titania loaded on fibrous silica (Ti-FS) (68%), Ti-CeO2 (35%), FSC (47%), FS (22%), and CeO2 (17%). The combination of the inherent merits of Ti loaded on FSC is able to realize the crucial role of Ce in harnessing the high dispersion of Ti, which could beneficial for improving the performance proven by XRD, FESEM, TEM and FTIR. Consequently, high dispersion of Ti on FSC has worthwhile towards the interaction of the Si-O-Ti, Ce-O-Ti, and Si-O-Ti, which could enhance the CIP photodegradation by providing more surface defects, narrowing the band gap, improving electron-hole separation and suppressing electron-hole recombination that revealed by XPS, UV-vis/DRS, Nyquist plots and PL studies, respectively. The scavenger study revealed that the controlling species in the system was hydroxyl radical and holes. A potential Z-scheme heterojunction mechanism for Ti-FSC was deduced from the band structure analysis. The possible photodegradation pathway was proposed based on GCMS analysis. Besides, the acceptable reusability, which exceeded 90% of degradation indicated the great application potential of Z-scheme Ti-FSC in wastewater treatment and others application.
Collapse
Affiliation(s)
- A A Fauzi
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Johor, Malaysia
| | - A A Jalil
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Johor, Malaysia; Centre of Hydrogen Energy, Institute of Future Energy, 81310, UTM, Johor Bahru, Johor, Malaysia.
| | - N S Hassan
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Johor, Malaysia
| | - F F A Aziz
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Johor, Malaysia
| | - M S Azami
- Faculty of Science, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Malaysia
| | - T A T Abdullah
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Johor, Malaysia; Centre of Hydrogen Energy, Institute of Future Energy, 81310, UTM, Johor Bahru, Johor, Malaysia
| | - M F A Kamaroddin
- Centre of Hydrogen Energy, Institute of Future Energy, 81310, UTM, Johor Bahru, Johor, Malaysia
| | - H D Setiabudi
- Faculty of Chemical and Process Engineering Technology, College of Engineering Technology, Universiti Malaysia Pahang, 26300, Gambang, Kuantan, Pahang, Malaysia
| |
Collapse
|
17
|
Afzal MZ, Zu P, Zhang CM, Guan J, Song C, Sun XF, Wang SG. Sonocatalytic degradation of ciprofloxacin using hydrogel beads of TiO 2 incorporated biochar and chitosan. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128879. [PMID: 35427970 DOI: 10.1016/j.jhazmat.2022.128879] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/17/2022] [Accepted: 04/05/2022] [Indexed: 05/12/2023]
Abstract
Pharmaceuticals are necessary to be removed from environment. Herein TiO2 incorporated biochar made from pyrolysis of agricultural wastes was encapsulated into chitosan to obtain a novel hydrogel beads. This hydrogel beads executed a dual role as both adsorbent and sonocatalyst, which proved to be suitable for the removal of antibiotic ciprofloxacin (CIP) from water. The results showed that adsorption of CIP followed pseudo first order kinetics model and Langmuir adsorption isotherm model, having maximum adsorption at pH 9. Whereas the degradation was more efficient at pH 6 due to greater standard potential for •OH/H2O in acidic media. The degradation was maximum at 150 W of ultrasonic power, then decreased in presence of dissimilar electrolytes and even reduced to 0 in presence of Na3PO4. Different quenchers such as benzoquinone (BQ), Triethanolamine (TEA) and isopropyl alcohol (IPA) reduced degradation efficiency (DE) and mineralization efficiency (ME). The DE was decreased from 85.23% to 81.50% (BQ), 74.27% (TEA), and 61.77% (IPA) within 25 min. The prepared sonocatalyst was capable of regeneration with DE, remaining sufficiently high (62%) even after four regeneration steps. These results indicate that titanium-biochar/chitosan hydrogel beads (TBCB) are durable and effective for long-term CIP removal.
Collapse
Affiliation(s)
- Muhammad Zaheer Afzal
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Department of Environmental Sciences, University of Jhang, Jhang, Pakistan
| | - Peng Zu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, China
| | - Chun-Miao Zhang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, China; Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Jing Guan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Chao Song
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Department of Environmental Sciences, University of Jhang, Jhang, Pakistan
| | - Xue-Fei Sun
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, China; Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| | - Shu-Guang Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| |
Collapse
|
18
|
Sekar P, Sadanand Joshi D, Manjunatha M, Mahalingam H. Enhanced disinfection of E. faecalis and levofloxacin antibiotic degradation using tridoped B-Ce-Ag TiO 2 photocatalysts synthesized by ecofriendly citrate EDTA complexing method. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:50765-50779. [PMID: 35239118 DOI: 10.1007/s11356-022-19268-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
Since its use for photochemical water splitting reported first in 1972, TiO2 is one of the most extensively studied photocatalysts for a diverse range of applications. Monodoping or codoping of the catalyst is a proven strategy to enhance the functionality of TiO2 under solar or visible light. However, the use of three or more dopants in the development of more efficient and visible light active photocatalysts has not been investigated widely, especially for microbial disinfection. Boron/cerium/silver tridoped TiO2 photocatalysts with curated amounts of the dopants (B = 1, 2 at.%, Ce = 0.1 at.%, Ag = 0.06 at.%), synthesized by the ecofriendly EDTA-citrate method, were evaluated for the disinfection of water using Enterococcus faecalis under UV-A irradiation and degradation of levofloxacin antibiotic under solar light. The catalyst characterization revealed that the spherical nanoparticles had a crystallite size of ~ 13 nm and bandgap energy values of 2.8-2.9 eV. 2B-0.1Ce-0.06Ag-TiO2 is the best catalyst for microbial disinfection with a log reduction and kinetic rate constant ~ 30 and ~ 4.5 times higher than those values determined for the other codoped or monodoped catalysts, confirming an enhanced performance. Regarding levofloxacin degradation, the best performing catalyst is 1B-0.1Ce-0.06Ag-TiO2 with degradation of 99% and 83% COD reduction in 100 min. The tridoped photocatalysts are very effective in the inactivation of Enterococcus faecalis, thus solving the problem of antimicrobial resistance in waters containing antibiotic residues.
Collapse
Affiliation(s)
- Pooja Sekar
- Department of Chemical Engineering, National Institute of Technology Karnataka (NITK) Surathkal, Mangalore, 575025, Karnataka, India
| | - Deepti Sadanand Joshi
- Department of Chemical Engineering, National Institute of Technology Karnataka (NITK) Surathkal, Mangalore, 575025, Karnataka, India
| | - Manasa Manjunatha
- Department of Chemical Engineering, National Institute of Technology Karnataka (NITK) Surathkal, Mangalore, 575025, Karnataka, India
| | - Hari Mahalingam
- Department of Chemical Engineering, National Institute of Technology Karnataka (NITK) Surathkal, Mangalore, 575025, Karnataka, India.
| |
Collapse
|
19
|
Moghni N, Boutoumi H, Khalaf H, Makaoui N, Colón G. Enhanced Photocatalytic Activity of TiO2/WO3 Nanocomposite from Sonochemical-Microwave Assisted Synthesis for the Photodegradation of Ciprofloxacin and Oxytetracycline Antibiotics under UV and Sunlight. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Herraiz-Carboné M, Cotillas S, Lacasa E, Sainz de Baranda C, Riquelme E, Cañizares P, Rodrigo MA, Sáez C. A review on disinfection technologies for controlling the antibiotic resistance spread. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:149150. [PMID: 34303979 DOI: 10.1016/j.scitotenv.2021.149150] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/07/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
The occurrence of antibiotic-resistant bacteria (ARB) in water bodies poses a sanitary and environmental risk. These ARB and other mobile genetic elements can be easily spread from hospital facilities, the point in which, for sure, they are more concentrated. For this reason, novel clean and efficient technologies are being developed for allowing to remove these ARB and other mobile genetic elements before their uncontrolled spread. In this paper, a review on the recent knowledge about the state of the art of the main disinfection technologies to control the antibiotic resistance spread from natural water, wastewater, and hospital wastewater (including urine matrices) is reported. These technologies involve not only conventional processes, but also the recent advances on advanced oxidation processes (AOPs), including electrochemical advanced oxidation processes (EAOPs). This review summarizes the state of the art on the applicability of these technologies and also focuses on the description of the disinfection mechanisms by each technology, highlighting the promising impact of EAOPs on the remediation of this important environmental and health problem.
Collapse
Affiliation(s)
- Miguel Herraiz-Carboné
- Department of Chemical Engineering, Higher Technical School of Industrial Engineering, University of Castilla-La Mancha, Edificio Infante Don Juan Manuel, Campus Universitario s/n, 02071 Albacete, Spain
| | - Salvador Cotillas
- Department of Chemical Engineering, Higher Technical School of Industrial Engineering, University of Castilla-La Mancha, Edificio Infante Don Juan Manuel, Campus Universitario s/n, 02071 Albacete, Spain.
| | - Engracia Lacasa
- Department of Chemical Engineering, Higher Technical School of Industrial Engineering, University of Castilla-La Mancha, Edificio Infante Don Juan Manuel, Campus Universitario s/n, 02071 Albacete, Spain.
| | - Caridad Sainz de Baranda
- Clinical Parasitology and Microbiology Area, University Hospital Complex of Albacete, C/Hermanos Falcó 37, 02006 Albacete, Spain
| | - Eva Riquelme
- Clinical Parasitology and Microbiology Area, University Hospital Complex of Albacete, C/Hermanos Falcó 37, 02006 Albacete, Spain
| | - Pablo Cañizares
- Department of Chemical Engineering, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Edificio Enrique Costa Novella, Campus Universitario s/n, 13005 Ciudad Real, Spain
| | - Manuel A Rodrigo
- Department of Chemical Engineering, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Edificio Enrique Costa Novella, Campus Universitario s/n, 13005 Ciudad Real, Spain
| | - Cristina Sáez
- Department of Chemical Engineering, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Edificio Enrique Costa Novella, Campus Universitario s/n, 13005 Ciudad Real, Spain
| |
Collapse
|
21
|
Abstract
TiO2 is a semiconductor material with high chemical stability and low toxicity. It is widely used in the fields of catalysis, sensing, hydrogen production, optics and optoelectronics. However, TiO2 photocatalyst is sensitive to ultraviolet (UV) light; this is why its photocatalytic activity and quantum efficiency are reduced. To enhance the photocatalytic efficiency in the visible light range as well as to increase the number of the active sites on the crystal surface or inhibit the recombination rate of photogenerated electron–hole pairs electrons, various metal ions were used to modify TiO2. This review paper comprehensively summarizes the latest progress on the modification of TiO2 photocatalyst by a variety of metal ions. Lastly, the future prospects of the modification of TiO2 as a photocatalyst are proposed.
Collapse
|
22
|
Parmar N, Srivastava JK. Degradation of pharmaceutical antibiotic (ciprofloxacin) by photocatalysis process using sol-gel based titanium dioxide nanoparticles. INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING 2021. [DOI: 10.1515/ijcre-2021-0076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
This study is an attempt to the removal of Ciprofloxacin (CIP) antibiotic from simulated wastewater using a photocatalytic process. The photocatalytic process was carried out in a photocatalytic reactor in the presence of TiO2 nanoparticles. TiO2 nanoparticles were successfully prepared in a laboratory scale using sol-gel method with titanium-isopropoxide (TTIP) as titanium precursor. Prepared material was found very effective to the removal of CIP antibiotic. The maximum removal efficiency of 87.95% of ciprofloxacin from aqueous solution was achieved at the pH 5, catalyst doze of 40 mg L−1 with initial concentration of ciprofloxacin 5 mg L−1, and the reaction time of 100 min additionally; material characterization of TiO2 was presented in detail in terms of XRD, SEM, UV, and FTIR. It has been found that at the optimum condition the total operating cost indicated for the removal of ciprofloxacin from aqueous solution is 786.56 (INR/kg of CIP removal). This technique demonstrated that photocatalytic reaction in presence of TiO2 nanoparticles is well applicable to treat pharmaceutical wastewater.
Collapse
Affiliation(s)
- Nitesh Parmar
- Department of Chemical Engineering , Ujjain Engineering College , Ujjain , Madhya Pradesh , India
| | | |
Collapse
|
23
|
Application of TiO2-Based Photocatalysts to Antibiotics Degradation: Cases of Sulfamethoxazole, Trimethoprim and Ciprofloxacin. Catalysts 2021. [DOI: 10.3390/catal11060728] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The extensive application of antibiotics in human and veterinary medicine has led to their widespread occurrence in a natural aquatic environment. Global health crisis is associated with the fast development of antimicrobial resistance, as more and more infectious diseases cannot be treated more than once. Sulfamethoxazole, trimethoprim and ciprofloxacin are the most commonly detected antibiotics in water systems worldwide. The persistent and toxic nature of these antibiotics makes their elimination by conventional treatment methods at wastewater treatment plants almost impossible. The application of advanced oxidation processes and heterogeneous photocatalysis over TiO2-based materials is a promising solution. This highly efficient technology has the potential to be sustainable, cost-efficient and energy-efficient. A comprehensive review on the application of various TiO2-based photocatalysts for the degradation of sulfamethoxazole, trimethoprim and ciprofloxacin is focused on highlighting their photocatalytic performance under various reaction conditions (different amounts of pollutant and photocatalyst, pH, light source, reaction media, presence of inorganic ions, natural organic matter, oxidants). Mineralization efficiency and ecotoxicity of final products have been also considered. Further research needs have been presented based on the literature findings. Among them, design and development of highly efficient under sunlight, stable, recyclable and cost-effective TiO2-based materials; usage of real wastewaters for photocatalytic tests; and compulsory assessment of products ecotoxicity are the most important research tasks in order to meet requirements for industrial application.
Collapse
|
24
|
Zhang J, Xie M, Zhao H, Zhang LR, Wei G, Zhao G. Preferential and efficient degradation of phenolic pollutants with cooperative hydrogen-bond interactions in photocatalytic process. CHEMOSPHERE 2021; 269:129404. [PMID: 33385675 DOI: 10.1016/j.chemosphere.2020.129404] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 12/15/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
Phenolic pollutants as highly toxic and hazardous organics are widely generated from industrial and domestic process. Phenolic pollutants with different hydroxyl position (catechol, resorcinol, hydroquinone, phenol) were preferentially and efficiently oxidized in photocatalytic process (PC) by designing boron-doped TiO2 (B-TiO2).The key role for enhancing the photocatalytic activity of B-TiO2 was the formation of abundant Ti3+ species. The formation of Ti3+-O weakened the competitive adsorption of H2O in aqueous solution and favored the formation of cooperative hydrogen bond on the surface of B-TiO2, leading to enhanced adsorption of phenolic pollutants. The degradation rate constant of B-TiO2 (kB-TiO2) was regardless of the corresponding oxidation potential of phenolic pollutants. The kB-TiO2 for catechol in photocatalytic process was as high as 3.46 min-1, which was 18.2, 1.6 times higher than that of biodegradation and ozonation methods, respectively. Of note, the preferential removal mechanism of phenolic pollutants was elucidated by in-situ attenuated total reflectance (ATR)-IR and density functional theory calculation (DFT). The results were helpful for developing new preferential oxidation technologies in HO∙-mediated process for selectively removing low concentration but highly toxic pollutants.
Collapse
Affiliation(s)
- Jinxing Zhang
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Siping Road 1239, Shanghai, 200092, PR China
| | - Mingli Xie
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Siping Road 1239, Shanghai, 200092, PR China
| | - Hongying Zhao
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Siping Road 1239, Shanghai, 200092, PR China.
| | - Ling-Ran Zhang
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Siping Road 1239, Shanghai, 200092, PR China
| | - Guangfeng Wei
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Siping Road 1239, Shanghai, 200092, PR China
| | - Guohua Zhao
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Siping Road 1239, Shanghai, 200092, PR China.
| |
Collapse
|