1
|
Ju NY, Lee SH, Kim SY, Park YR, Lee BJ, Kim J, Choi J, Kim DH, Lee KY. Redefining the Role of Cobalt Oxide in Ethane Dehydroaromatization: Insights into Enhanced Catalytic Activity and Stability. ACS APPLIED MATERIALS & INTERFACES 2025; 17:823-834. [PMID: 39720877 DOI: 10.1021/acsami.4c13379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
Cobalt is recognized as an active catalyst in ethane dehydroaromatization (EDA) reactions due to its efficient ethane cracking capability. In order to optimize cobalt's strong ethane cracking capability, it was loaded onto HZSM-5 zeolite through impregnation. This study was conducted with Co-loaded HZSM-5 catalysts with an incipient wetness impregnation method and witnessed an increase of catalytic activity with a long induction period. We elucidated the prior reduction of external Co3O4 before BTX synthesis and the novel roles of external Co3O4 in suppressing deactivation─an aspect not extensively explored in previous studies utilizing single Co catalysts. The utilization of Co3O4 as a catalyst on external zeolites promotes the generation of carbon nanotubes (CNTs) while inhibiting the formation of graphite, thereby suppressing the deactivation of the catalyst. Furthermore, experimental comparisons with Co catalysts synthesized via ion exchange and physical mixing underscore the role of Co ions anchored to internal zeolite as active sites for BTX synthesis as well as emphasize the importance of external Co3O4 in enhancing catalyst stability.
Collapse
Affiliation(s)
- Na Yeong Ju
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Seok-Ho Lee
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Sang Yun Kim
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Ye Rim Park
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Byung Jin Lee
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jinseong Kim
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jungkyu Choi
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Do Heui Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Kwan-Young Lee
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
2
|
Gu Y, Tao Z, Zhang S, Wang X, Yan H, Liu X, Wang L, Xu J, Shi H. (Ga, Al)-H-MFI Catalysts with Highly Dispersed Ga Sites and Proximal Protonic Sites Enable Methane-Propane Coaromatization. Inorg Chem 2024. [PMID: 39556842 DOI: 10.1021/acs.inorgchem.4c04152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Methane-propane coaromatization (MPCA) upgrades two abundant and inexpensive light alkanes into value-added aromatic products. While Ga-loaded MFI zeolites represent by far the most promising catalysts for MPCA reaction, they often contain a sizable portion of Ga species at the external surface of zeolites, which are remote from the Brønsted acid sites (BAS) within MFI pores and thus inefficient for MPCA. Here, we show that Ga can be introduced into MFI pores at fairly high loadings via a simple cocrystallization approach, yielding catalysts possessing well-dispersed Ga sites predominantly residing inside the pores and framework. Adjacency between Ga and BAS within the constraints of MFI channels makes these (Ga, Al)-H-MFI catalysts more active toward methane and propane activation and more selective toward aromatics compared to the Ga/MFI counterparts prepared by impregnation that inevitably leaves a large fraction of Ga at the external surface (i.e., without confinement and few adjacent BAS). Further, the effects of the Si/Al ratio on MPCA performance have been investigated for (Ga, Al)-H-MFI catalysts. Due to the multifold roles of BAS in the overall reaction sequence, an increased BAS concentration generally results in higher propane conversion and productivity of aromatics together with lower net methane conversion and severer coking.
Collapse
Affiliation(s)
- Yu Gu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, P. R. China
| | - Zhiqiang Tao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, P. R. China
| | - Shujia Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, P. R. China
| | - Xiaohui Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Hao Yan
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Xinmei Liu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Lei Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, P. R. China
| | - Jun Xu
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Hui Shi
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, P. R. China
| |
Collapse
|
3
|
Liu K, Shoinkhorova T, You X, Gong X, Zhang X, Chung SH, Ruiz-Martínez J, Gascon J, Dutta Chowdhury A. The synergistic interplay of hierarchy, crystal size, and Ga-promotion in the methanol-to-aromatics process over ZSM-5 zeolites. Dalton Trans 2024; 53:11344-11353. [PMID: 38899920 DOI: 10.1039/d4dt00793j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
In the context of advancing social modernization, the projected shortfall in the demand for renewable aromatic hydrocarbons is expected to widen, influenced by industries like high-end materials, pharmaceuticals, and consumer goods. Sustainable methods for aromatic production from alternative sources, particularly the methanol-to-aromatics (MTA) process using zeolite ZSM-5 and associated with the "methanol economy", have garnered widespread attention. To facilitate this transition, our project consolidates conventional strategies that impact aromatics selectivity-such as using hierarchical zeolites, metallic promoters, or altering zeolite physicochemical properties-into a unified study. Our findings demonstrate the beneficial impact of elongated crystal size and heightened zeolite hierarchy on preferential aromatics selectivity, albeit through distinct mechanisms involving the consumption of shorter olefins. While metallic promoters enhance MTA performance, crystal size, and hierarchy remain pivotal in achieving the maximized aromatics selectivity. This study contributes to a deeper understanding of achieving superior aromatics selectivity through physicochemical modifications in zeolite ZSM-5 during MTA catalysis, thereby advancing the field's comprehension of structure-reactivity relationships.
Collapse
Affiliation(s)
- Kun Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, PR China.
| | - Tuiana Shoinkhorova
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia.
| | - Xinyu You
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, PR China.
| | - Xuan Gong
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, PR China.
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia.
| | - Xin Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, PR China.
| | - Sang-Ho Chung
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia.
| | - Javier Ruiz-Martínez
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia.
| | - Jorge Gascon
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia.
| | | |
Collapse
|
4
|
Caiola A, Robinson B, Brown S, Wang X, Wang Y, Hu J. Oxidative ethane dehydrogenation under thermal vs. microwave heating over Ga/ZSM-5 and GaPt/ZSM-5. CATAL COMMUN 2023. [DOI: 10.1016/j.catcom.2023.106631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023] Open
|
5
|
Recent Progress of Ga-Based Catalysts for Catalytic Conversion of Light Alkanes. Catalysts 2022. [DOI: 10.3390/catal12111371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The efficient and clean conversion of light alkanes is a research hotspot in the petrochemical industry, and the development of effective and eco-friendly non-noble metal-based catalysts is a key factor in this field. Among them, gallium is a metal component with good catalytic performance, which has been extensively used for light alkanes conversion. Herein, we critically summarize recent developments in the preparation of gallium-based catalysts and their applications in the catalytic conversion of light alkanes. First, we briefly describe the different routes of light alkane conversion. Following that, the remarkable preparation methods for gallium-based catalysts are discussed, with their state-of-the-art application in light alkane conversion. It should be noticed that the directional preparation of specific Ga species, strengthening metal-support interactions to anchor Ga species, and the application of new kinds of methods for Ga-based catalysts preparation are at the leading edge. Finally, the review provides some current limitations and future perspectives for the development of gallium-based catalysts. Recently, different kinds of Ga species were reported to be active in alkane conversion, and how to separate them with advanced in situ and ex situ characterizations is still a problem that needs to be solved. We believe that this review can provide base information for the preparation and application of Ga-based catalysts in the current stage. With these summarizations, this review can inspire new research directions of gallium-based catalysts in the catalysis conversion of light alkanes with ameliorated performances.
Collapse
|
6
|
Gong X, Çağlayan M, Ye Y, Liu K, Gascon J, Dutta Chowdhury A. First-Generation Organic Reaction Intermediates in Zeolite Chemistry and Catalysis. Chem Rev 2022; 122:14275-14345. [PMID: 35947790 DOI: 10.1021/acs.chemrev.2c00076] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Zeolite chemistry and catalysis are expected to play a decisive role in the next decade(s) to build a more decentralized renewable feedstock-dependent sustainable society owing to the increased scrutiny over carbon emissions. Therefore, the lack of fundamental and mechanistic understanding of these processes is a critical "technical bottleneck" that must be eliminated to maximize economic value and minimize waste. We have identified, considering this objective, that the chemistry related to the first-generation reaction intermediates (i.e., carbocations, radicals, carbenes, ketenes, and carbanions) in zeolite chemistry and catalysis is highly underdeveloped or undervalued compared to other catalysis streams (e.g., homogeneous catalysis). This limitation can often be attributed to the technological restrictions to detect such "short-lived and highly reactive" intermediates at the interface (gas-solid/solid-liquid); however, the recent rise of sophisticated spectroscopic/analytical techniques (including under in situ/operando conditions) and modern data analysis methods collectively compete to unravel the impact of these organic intermediates. This comprehensive review summarizes the state-of-the-art first-generation organic reaction intermediates in zeolite chemistry and catalysis and evaluates their existing challenges and future prospects, to contribute significantly to the "circular carbon economy" initiatives.
Collapse
Affiliation(s)
- Xuan Gong
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei P. R. China
| | - Mustafa Çağlayan
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Yiru Ye
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei P. R. China
| | - Kun Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei P. R. China
| | - Jorge Gascon
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | | |
Collapse
|
7
|
Hydrogenation of Carbon Dioxide to Value-Added Liquid Fuels and Aromatics over Fe-Based Catalysts Based on the Fischer–Tropsch Synthesis Route. ATMOSPHERE 2022. [DOI: 10.3390/atmos13081238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hydrogenation of CO2 to value-added chemicals and fuels not only effectively alleviates climate change but also reduces over-dependence on fossil fuels. Therefore, much attention has been paid to the chemical conversion of CO2 to value-added products, such as liquid fuels and aromatics. Recently, efficient catalysts have been developed to face the challenge of the chemical inertness of CO2 and the difficulty of C–C coupling. Considering the lack of a detailed summary on hydrogenation of CO2 to liquid fuels and aromatics via the Fischer–Tropsch synthesis (FTS) route, we conducted a comprehensive and systematic review of the research progress on the development of efficient catalysts for hydrogenation of CO2 to liquid fuels and aromatics. In this work, we summarized the factors influencing the catalytic activity and stability of various catalysts, the strategies for optimizing catalytic performance and product distribution, the effects of reaction conditions on catalytic performance, and possible reaction mechanisms for CO2 hydrogenation via the FTS route. Furthermore, we also provided an overview of the challenges and opportunities for future research associated with hydrogenation of CO2 to liquid fuels and aromatics.
Collapse
|
8
|
Matveenko ES, Grigoriev MV, Kremleva TA, Andrusenko EV, Kosinov NA. Methods for Studies of Reactions on Zeolite Catalysts Occurring by the Hydrocarbon Pool Mechanism. KINETICS AND CATALYSIS 2022. [DOI: 10.1134/s0023158422040061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Song S, Li T, Ju Y, Li Y, Lv Z, Zheng P, Duan A, Wu P, Wang X. Lanthanum/Gallium-Modified Zn/ZSM-5 Zeolite for Efficient Isomerization/Aromatization of FCC Light Gasoline. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shaotong Song
- Petrochemical Research Institute, PetroChina Company Limited, Beijing 100195, P. R. China
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, P. R. China
| | - Tianshu Li
- Petrochemical Research Institute, PetroChina Company Limited, Beijing 100195, P. R. China
| | - Yana Ju
- Petrochemical Research Institute, PetroChina Company Limited, Beijing 100195, P. R. China
| | - Yang Li
- Petrochemical Research Institute, PetroChina Company Limited, Beijing 100195, P. R. China
| | - Zhongwu Lv
- Petrochemical Research Institute, PetroChina Company Limited, Beijing 100195, P. R. China
| | - Peng Zheng
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, P. R. China
| | - Aijun Duan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, P. R. China
| | - Pei Wu
- Petrochemical Research Institute, PetroChina Company Limited, Beijing 100195, P. R. China
| | - Xilong Wang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, P. R. China
- KAUST Catalysis Center and Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
10
|
Chen G, Fang L, Li T, Xiang Y. Ultralow-Loading Pt/Zn Hybrid Cluster in Zeolite HZSM-5 for Efficient Dehydroaromatization. J Am Chem Soc 2022; 144:11831-11839. [PMID: 35748573 DOI: 10.1021/jacs.2c04278] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Minimizing Pt loading without sacrificing catalytic performance is critical, particularly for designing cost-efficient hydrocarbon transformation catalysts. Here, we show that ultralow-loading (0.001-0.05 wt %) Pt- and Zn-functionalized HZSM-5 catalysts, prepared through simple ion exchange and impregnation, are highly active and stable for light alkane dehydroaromatization (DHA). The specific activity of benzene, toluene, and xylene is up to 8.2 mol/gPt/min (or 1592 min-1) over the 0.001 wt % Pt-Zn2/HZSM-5 catalyst during ethane DHA at 550 °C under atmospheric pressure. Additionally, such bimetallic Ptx-Zny/HZSM-5 catalysts are highly stable in contrast to the monometallic Pt/HZSM-5 catalysts. The rate constant of deactivation (kdeactiv), according to the first-order generalized power law equation model, for the bimetallic catalysts is up to 120 times lower than that of the monometallic counterparts, depending on the Pt loading. This breakthrough is achieved through the formation of the [Pt1-Znn]δ+ hybrid cluster, instead of Pt0 cluster-proton adducts, in the micropores of the ZSM-5 zeolite.
Collapse
Affiliation(s)
- Genwei Chen
- Dave C. Swalm School of Chemical Engineering, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Lingzhe Fang
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115, United States
| | - Tao Li
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115, United States.,X-ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Yizhi Xiang
- Dave C. Swalm School of Chemical Engineering, Mississippi State University, Mississippi State, Mississippi 39762, United States
| |
Collapse
|
11
|
Step-change performance enhancement of ethylene aromatization on Ga-ZSM-5 through steaming treatment. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Acetonitrile formation from ethane or ethylene through anaerobic ammodehydrogenation. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Gao D, Zhi Y, Cao L, Zhao L, Gao J, Xu C. Optimizing the Acid Properties of the HZSM-5 Catalyst for Increasing the p-Xylene Yield in 1-Hexene Aromatization. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Di Gao
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing, P. R. China 102249
| | - Yibo Zhi
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing, P. R. China 102249
| | - Liyuan Cao
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing, P. R. China 102249
| | - Liang Zhao
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing, P. R. China 102249
| | - Jinsen Gao
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing, P. R. China 102249
| | - Chunming Xu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing, P. R. China 102249
| |
Collapse
|
14
|
Fujimoto Y, Sumi T, Miyake K, Uchida Y, Nishiyama N. Improving coke resistance of Zn ion exchanged ZSM-5 on dehydroaromatization of ethane by Cr species loading. CHEM LETT 2022. [DOI: 10.1246/cl.210765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yugo Fujimoto
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Tomoka Sumi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Koji Miyake
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Yoshiaki Uchida
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Norikazu Nishiyama
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
15
|
Ishimaru H, Yoshikawa T, Nakasaka Y, Fumoto E, Sato S, Masuda T. Synthesis of phenol from degraded lignin using synergistic effect of iron-oxide based catalysts: Oxidative cracking ability and acid-base properties. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Huang M, Yasumura S, Li L, Toyao T, Maeno Z, Shimizu KI. High-loading Ga-exchanged MFI zeolites as selective and coke-resistant catalysts for nonoxidative ethane dehydrogenation. Catal Sci Technol 2022. [DOI: 10.1039/d1cy01799c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A high-loading Ga-exchanged MFI zeolite was developed for efficient ethane dehydrogenation. Its high catalytic performance is ascribed to both the low amount of Brønsted acid sites and the major formation of [GaH2]+ ions among isolated Ga hydrides.
Collapse
Affiliation(s)
- Mengwen Huang
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Shunsaku Yasumura
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Lingcong Li
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Takashi Toyao
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto, 615-8520, Japan
| | - Zen Maeno
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Ken-ichi Shimizu
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto, 615-8520, Japan
| |
Collapse
|
17
|
|
18
|
Del Campo P, Martínez C, Corma A. Activation and conversion of alkanes in the confined space of zeolite-type materials. Chem Soc Rev 2021; 50:8511-8595. [PMID: 34128513 DOI: 10.1039/d0cs01459a] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Microporous zeolite-type materials, with crystalline porous structures formed by well-defined channels and cages of molecular dimensions, have been widely employed as heterogeneous catalysts since the early 1960s, due to their wide variety of framework topologies, compositional flexibility and hydrothermal stability. The possible selection of the microporous structure and of the elements located in framework and extraframework positions enables the design of highly selective catalysts with well-defined active sites of acidic, basic or redox character, opening the path to their application in a wide range of catalytic processes. This versatility and high catalytic efficiency is the key factor enabling their use in the activation and conversion of different alkanes, ranging from methane to long chain n-paraffins. Alkanes are highly stable molecules, but their abundance and low cost have been two main driving forces for the development of processes directed to their upgrading over the last 50 years. However, the availability of advanced characterization tools combined with molecular modelling has enabled a more fundamental approach to the activation and conversion of alkanes, with most of the recent research being focused on the functionalization of methane and light alkanes, where their selective transformation at reasonable conversions remains, even nowadays, an important challenge. In this review, we will cover the use of microporous zeolite-type materials as components of mono- and bifunctional catalysts in the catalytic activation and conversion of C1+ alkanes under non-oxidative or oxidative conditions. In each case, the alkane activation will be approached from a fundamental perspective, with the aim of understanding, at the molecular level, the role of the active sites involved in the activation and transformation of the different molecules and the contribution of shape-selective or confinement effects imposed by the microporous structure.
Collapse
Affiliation(s)
- Pablo Del Campo
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 Valencia, Spain.
| | | | | |
Collapse
|
19
|
Caiola A, Robinson B, Bai X, Shekhawat D, Hu J. Study of the Hydrogen Pretreatment of Gallium and Platinum Promoted ZSM-5 for the Ethane Dehydroaromatization Reaction. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ashley Caiola
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, West Virginia 26505, United States
| | - Brandon Robinson
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, West Virginia 26505, United States
| | - Xinwei Bai
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, West Virginia 26505, United States
| | - Dushyant Shekhawat
- National Energy Technology Laboratory, U.S. Department of Energy, 3610 Collins Ferry Road. Morgantown, West Virginia 26505, United States
| | - Jianli Hu
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, West Virginia 26505, United States
| |
Collapse
|
20
|
Feng Z, Liu X, Wang Y, Meng C. Recent Advances on Gallium-Modified ZSM-5 for Conversion of Light Hydrocarbons. Molecules 2021; 26:molecules26082234. [PMID: 33924390 PMCID: PMC8069487 DOI: 10.3390/molecules26082234] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/05/2021] [Accepted: 04/08/2021] [Indexed: 11/16/2022] Open
Abstract
Light olefins are key components of modern chemical industry and are feedstocks for the production of many commodity chemicals widely used in our daily life. It would be of great economic significance to convert light alkanes, produced during the refining of crude oil or extracted during the processing of natural gas selectively to value-added products, such as light alkenes, aromatic hydrocarbons, etc., through catalytic dehydrogenation. Among various catalysts developed, Ga-modified ZSM-5-based catalysts exhibit superior catalytic performance and stability in dehydrogenation of light alkanes. In this mini review, we summarize the progress on synthesis and application of Ga-modified ZSM-5 as catalysts in dehydrogenation of light alkanes to olefins, and the dehydroaromatization to aromatics in the past two decades, as well as the discussions on in-situ formation and evolution of reactive Ga species as catalytic centers and the reaction mechanisms.
Collapse
Affiliation(s)
| | - Xin Liu
- Correspondence: (X.L.); (C.M.)
| | | | | |
Collapse
|
21
|
Xie Z, Gomez E, Chen JG. Simultaneously upgrading
CO
2
and light alkanes into value‐added products. AIChE J 2021. [DOI: 10.1002/aic.17249] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zhenhua Xie
- Chemistry Division Brookhaven National Laboratory Upton New York USA
- Department of Chemical Engineering Columbia University New York New York USA
| | - Elaine Gomez
- Department of Chemical Engineering Columbia University New York New York USA
| | - Jingguang G. Chen
- Chemistry Division Brookhaven National Laboratory Upton New York USA
- Department of Chemical Engineering Columbia University New York New York USA
| |
Collapse
|
22
|
Phadke NM, Mansoor E, Head-Gordon M, Bell AT. Mechanism and Kinetics of Light Alkane Dehydrogenation and Cracking over Isolated Ga Species in Ga/H-MFI. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04906] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Neelay M. Phadke
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Erum Mansoor
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Martin Head-Gordon
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Alexis T. Bell
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
23
|
In-Exchanged CHA Zeolites for Selective Dehydrogenation of Ethane: Characterization and Effect of Zeolite Framework Type. Catalysts 2020. [DOI: 10.3390/catal10070807] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this study, the characterization of In-exchanged CHA zeolite (In-CHA (SiO2/Al2O3 = 22.3)) was conducted by in-situ X-ray diffraction (XRD) and ammonia temperature-programmed desorption (NH3-TPD). We also prepared other In-exchanged zeolites with different zeolite structures (In-MFI (SiO2/Al2O3 = 22.3), In-MOR (SiO2/Al2O3 = 20), and In-BEA (SiO2/Al2O3 = 25)) and different SiO2/Al2O3 ratios (In-CHA(Al-rich) (SiO2/Al2O3 = 13.7)). Their catalytic activities in nonoxidative ethane dehydrogenation were compared. Among the tested catalysts, In-CHA(Al-rich) provided the highest conversion. From kinetic experiments and in-situ Fourier transform infrared (FTIR) spectroscopy, [InH2]+ ions are formed regardless of SiO2/Al2O3 ratio, serving as the active sites.
Collapse
|
24
|
Saito H, Sekine Y. Catalytic conversion of ethane to valuable products through non-oxidative dehydrogenation and dehydroaromatization. RSC Adv 2020; 10:21427-21453. [PMID: 35518732 PMCID: PMC9054567 DOI: 10.1039/d0ra03365k] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/28/2020] [Indexed: 11/24/2022] Open
Abstract
Chemical utilization of ethane to produce valuable chemicals has become especially attractive since the expanded utilization of shale gas in the United States and associated petroleum gas in the Middle East. Catalytic conversion to ethylene and aromatic hydrocarbons through non-oxidative dehydrogenation and dehydroaromatization of ethane (EDH and EDA) are potentially beneficial technologies because of their high selectivity to products. The former represents an attractive alternative to conventional thermal cracking of ethane. The latter can produce valuable aromatic hydrocarbons from a cheap feedstock. Nevertheless, further progress in catalytic science and technology is indispensable to implement these processes beneficially. This review summarizes progress that has been achieved with non-oxidative EDH and EDA in terms of the nature of active sites and reaction mechanisms. Briefly, platinum-, chromium- and gallium-based catalysts have been introduced mainly for EDH, including effects of carbon dioxide co-feeding. Efforts to use EDA have emphasized zinc-modified MFI zeolite catalysts. Finally, some avenues for development of catalytic science and technology for ethane conversion are summarized.
Collapse
Affiliation(s)
- Hikaru Saito
- Department of Materials Molecular Science, Institute for Molecular Science 38 Nishigo-Naka, Myodaiji Okazaki Aichi 444-8585 Japan +81 564 55 7287
- Department of Applied Chemistry, Waseda University 3-4-1 Okubo Shinjuku Tokyo 169-8555 Japan
| | - Yasushi Sekine
- Department of Applied Chemistry, Waseda University 3-4-1 Okubo Shinjuku Tokyo 169-8555 Japan
| |
Collapse
|