1
|
De Villenoisy T, Zheng X, Wong V, Mofarah SS, Arandiyan H, Yamauchi Y, Koshy P, Sorrell CC. Principles of Design and Synthesis of Metal Derivatives from MOFs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210166. [PMID: 36625270 DOI: 10.1002/adma.202210166] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/15/2022] [Indexed: 06/16/2023]
Abstract
Materials derived from metal-organic frameworks (MOFs) have demonstrated exceptional structural variety and complexity and can be synthesized using low-cost scalable methods. Although the inherent instability and low electrical conductivity of MOFs are largely responsible for their low uptake for catalysis and energy storage, a superior alternative is MOF-derived metal-based derivatives (MDs) as these can retain the complex nanostructures of MOFs while exhibiting stability and electrical conductivities of several orders of magnitude higher. The present work comprehensively reviews MDs in terms of synthesis and their nanostructural design, including oxides, sulfides, phosphides, nitrides, carbides, transition metals, and other minor species. The focal point of the approach is the identification and rationalization of the design parameters that lead to the generation of optimal compositions, structures, nanostructures, and resultant performance parameters. The aim of this approach is to provide an inclusive platform for the strategies to design and process these materials for specific applications. This work is complemented by detailed figures that both summarize the design and processing approaches that have been reported and indicate potential trajectories for development. The work is also supported by comprehensive and up-to-date tabular coverage of the reported studies.
Collapse
Affiliation(s)
| | - Xiaoran Zheng
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Vienna Wong
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Sajjad S Mofarah
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Hamidreza Arandiyan
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), RMIT University, Melbourne, VIC, 3000, Australia
- Laboratory of Advanced Catalysis for Sustainability, School of Chemistry, University of Sydney, Sydney, NSW, 2006, Australia
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Pramod Koshy
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Charles C Sorrell
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| |
Collapse
|
2
|
Ahmad W, Koley P, Dwivedi S, Lakshman R, Shin YK, van Duin ACT, Shrotri A, Tanksale A. Aqueous phase conversion of CO 2 into acetic acid over thermally transformed MIL-88B catalyst. Nat Commun 2023; 14:2821. [PMID: 37198184 DOI: 10.1038/s41467-023-38506-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 05/05/2023] [Indexed: 05/19/2023] Open
Abstract
Sustainable production of acetic acid is a high priority due to its high global manufacturing capacity and numerous applications. Currently, it is predominantly synthesized via carbonylation of methanol, in which both the reactants are fossil-derived. Carbon dioxide transformation into acetic acid is highly desirable to achieve net zero carbon emissions, but significant challenges remain to achieve this efficiently. Herein, we report a heterogeneous catalyst, thermally transformed MIL-88B with Fe0 and Fe3O4 dual active sites, for highly selective acetic acid formation via methanol hydrocarboxylation. ReaxFF molecular simulation, and X-ray characterisation results show a thermally transformed MIL-88B catalyst consisting of highly dispersed Fe0/Fe(II)-oxide nanoparticles in a carbonaceous matrix. This efficient catalyst showed a high acetic acid yield (590.1 mmol/gcat.L) with 81.7% selectivity at 150 °C in the aqueous phase using LiI as a co-catalyst. Here we present a plausible reaction pathway for acetic acid formation reaction via a formic acid intermediate. No significant difference in acetic acid yield and selectivity were noticed during the catalyst recycling study up to five cycles. This work is scalable and industrially relevant for carbon dioxide utilisation to reduce carbon emissions, especially when green methanol and green hydrogen are readily available in future.
Collapse
Affiliation(s)
- Waqar Ahmad
- Department of Chemical and Biological Engineering, Monash University, Clayton, 3800, Australia
| | - Paramita Koley
- Department of Chemical and Biological Engineering, Monash University, Clayton, 3800, Australia
| | - Swarit Dwivedi
- Department of Chemical and Biological Engineering, Monash University, Clayton, 3800, Australia
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Rajan Lakshman
- Department of Chemical and Biological Engineering, Monash University, Clayton, 3800, Australia
| | - Yun Kyung Shin
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Adri C T van Duin
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Abhijit Shrotri
- Institute for Catalysis, Hokkaido University, Sapporo, 001-0021, Japan
| | - Akshat Tanksale
- Department of Chemical and Biological Engineering, Monash University, Clayton, 3800, Australia.
| |
Collapse
|
3
|
Almazán F, Lafuente M, Echarte A, Imizcoz M, Pellejero I, Gandía LM. UiO-66 MOF-Derived Ru@ZrO2 Catalysts for Photo-Thermal CO2 Hydrogenation. CHEMISTRY 2023. [DOI: 10.3390/chemistry5020051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
The use of metal–organic frameworks (MOFs) as templates or precursors in the manufacture of heterogeneous catalysts is highly attractive due to the transfer of MOFs’ inherent porosity and homogeneous metallic distribution to the derived structure. Herein, we report on the preparation of MOF-derived Ru@ZrO2 catalysts by controlled thermal treatment of zirconium-based MOF UiO-66 with ruthenium moieties. Ru3+ (3 or 10 mol%) precursor was added to UiO-66 synthesis and, subsequently, the as-synthesized hybrid structure was calcined in flowing air at different temperatures (400–600 °C) to obtain ZrO2-derived oxides doped with highly dispersed Ru metallic clusters. The materials were tested for the catalytic photo-thermal conversion of CO2 to CH4. Methanation experiments were conducted in a continuous flow (feed flow rate of 5 sccm and 1:4 CO2 to H2 molar ratio) reactor at temperatures from 80 to 300 °C. Ru0.10@ZrO2 catalyst calcined at 600 °C was able to hydrogenate CO2 to CH4 with production rates up to 65 mmolCH4·gcat.–1·h–1, CH4 yield of 80% and nearly 100% selectivity at 300 °C. The effect of the illumination was investigated with this catalyst using a high-power visible LED. A CO2 conversion enhancement from 18% to 38% was measured when 24 sun of visible LED radiation was applied, mainly due to the increase in the temperature as a result of the efficient absorption of the radiation received. MOF-derived Ru@ZrO2 catalysts have resulted to be noticeably active materials for the photo-thermal hydrogenation of CO2 for the purpose of the production of carbon-neutral methane. A remarkable effect of the ZrO2 crystalline phase on the CH4 selectivity has been found, with monoclinic zirconia being much more selective to CH4 than its cubic allotrope.
Collapse
|
4
|
Recent advances in the application of metal-organic frameworks (MOFs)-based nanocatalysts for direct conversion of carbon dioxide (CO2) to value-added chemicals. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
5
|
Lee MS, Hoadley A, Patel J, Lim S, Kozielski K, Li C. Techno-Economic Analysis for Direct Processing of Wet Solid Residues Originated from Grain and Inedible Plant Wastes. BIOENERGY RESEARCH 2022; 16:940-953. [PMID: 35992629 PMCID: PMC9383684 DOI: 10.1007/s12155-022-10501-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/02/2022] [Indexed: 05/06/2023]
Abstract
Large number of solid wastes is produced from ethanol and wine plants sourcing from grain and inedible plant wastes, for example, WDGS (wet distiller's grain with soluble) and DDGS (dry distiller's grain with soluble) produced from ethanol plants using corn. This study investigates alternative methods for using these co-products through combustion and anaerobic digestion. Process simulation and economic analysis were conducted using current market prices to evaluate the viability of the processes. Products in the form of energy are produced. Optimization of the corn ethanol plant was also explored for re-using the heat and electricity produced in those processes. These processes will supply more viable options to utilisation of those wastes. The anaerobic digestion of WDGS to produce electricity scenario was found to have the biggest profit among the four scenarios which can bring the annual income of 14.1 million Australian dollar to the ethanol plant. An environmental analysis of the CO2 emissions was also conducted. Using the Australian state emission factor, the amount of CO2 offset through both combustion and anaerobic digestion can be seen. The anaerobic digestion of WDGS to supply heat to the plant was proved having the largest CO2 abatement with the value of 0.58 kg-CO2e/L-EtOH. Supplementary Information The online version contains supplementary material available at 10.1007/s12155-022-10501-6.
Collapse
Affiliation(s)
- May-Suan Lee
- School of Chemical Engineering, Monash University, Clayton, VIC 3168 Australia
| | - Andrew Hoadley
- School of Chemical Engineering, Monash University, Clayton, VIC 3168 Australia
| | - Jim Patel
- CSIRO Energy, 71 Normanby Road, Clayton North, Victoria 3169 Australia
| | - Seng Lim
- CSIRO Energy, 71 Normanby Road, Clayton North, Victoria 3169 Australia
| | - Karen Kozielski
- CSIRO Energy, 71 Normanby Road, Clayton North, Victoria 3169 Australia
| | - Chao’en Li
- CSIRO Energy, 71 Normanby Road, Clayton North, Victoria 3169 Australia
| |
Collapse
|
6
|
Zhang Q, Wang S, Dong M, Fan W. CO2 Hydrogenation on Metal-Organic Frameworks-Based Catalysts: A Mini Review. Front Chem 2022; 10:956223. [PMID: 35923257 PMCID: PMC9339898 DOI: 10.3389/fchem.2022.956223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/15/2022] [Indexed: 11/30/2022] Open
Abstract
Conversion of carbon dioxide (CO2) into value-added fuels and chemicals can not only reduce the emission amount of CO2 in the atmosphere and alleviate the greenhouse effect but also realize carbon recycling. Through hydrogenation with renewable hydrogen (H2), CO2 can be transformed into various hydrocarbons and oxygenates, including methanol, ethanol, methane and light olefins, etc. Recently, metal-organic frameworks (MOFs) have attracted extensive attention in the fields of adsorption, gas separation, and catalysis due to their high surface area, abundant metal sites, and tunable metal-support interface interaction. In CO2 hydrogenation, MOFs are regarded as important supports or sacrificed precursors for the preparation of high-efficient catalysts, which can uniformly disperse metal nanoparticles (NPs) and enhance the interaction between metal and support to prevent sintering and aggregation of active metal species. This work summarizes the recent process on hydrogenation of CO2 to methanol, methane and other C2+ products over various MOFs-based catalysts, and it will provide some dues for the design of MOFs materials in energy-efficient conversion and utilization.
Collapse
Affiliation(s)
- Qian Zhang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Sen Wang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, China
- *Correspondence: Sen Wang, ; Weibin Fan,
| | - Mei Dong
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, China
| | - Weibin Fan
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, China
- *Correspondence: Sen Wang, ; Weibin Fan,
| |
Collapse
|
7
|
Song D, Ji X, Chen S, Wang L, Wu S, Zhang Y, Ma Z, Gao E, Zhu M. A Luminescent Sensor based on a Cd2+ Complex for the Detection of Nitrofuran Antibiotics in Aqueous Solution. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
8
|
Sholeha NA, Mohamad S, Bahruji H, Prasetyoko D, Widiastuti N, Abdul Fatah NA, Jalil AA, Taufiq-Yap YH. Enhanced CO 2 methanation at mild temperature on Ni/zeolite from kaolin: effect of metal-support interface. RSC Adv 2021; 11:16376-16387. [PMID: 35479131 PMCID: PMC9031409 DOI: 10.1039/d1ra01014j] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 04/26/2021] [Indexed: 11/25/2022] Open
Abstract
Catalytic CO2 hydrogenation to CH4 offers a viable route for CO2 conversion into carbon feedstock. The research aimed to enhance CO2 conversion at low temperature and to increase the stability of Ni catalysts using zeolite as a support. NaZSM-5 (MFI), NaA (LTA), NaY (FAU), and NaBEA (BEA) synthesized from kaolin were impregnated with 15% Ni nanoparticles in order to elucidate the effect of surface area, porosity and basicity of the zeolite in increasing Ni activity at mild temperature of ∼200 °C. A highly dispersed Ni catalyst was produced on high surface area NaY meanwhile the mesoporosity of ZSM-5 has no significant effect in improving Ni dispersion. However, the important role of zeolite mesoporosity was observed on the stability of the catalyst. Premature deactivation of Ni/NaA within 10 h was due to the relatively small micropore size that restricted the CO2 diffusion, meanwhile Ni/NaZSM-5 with a large mesopore size exhibited catalytic stability for 40 h of reaction. Zeolite NaY enhanced Ni activity at 200 °C to give 21% conversion with 100% CH4 selectivity. In situ FTIR analysis showed the formation of hydrogen carbonate species and formate intermediates at low temperatures on Ni/NaY, which implied the efficiency of electron transfer from the basic sites of NaY during CO2 reduction. The combination of Ni/NaY interfacial interaction and NaY surface basicity promoted CO2 methanation reaction at low temperature. Different Na-zeolites as supports of Ni metal were successfully synthesized from kaolin-based material. Combination of interfacial interaction Ni-support and surface basicity promoted CO2 methanation reaction at a low temperature of ∼200 °C.![]()
Collapse
Affiliation(s)
- Novia Amalia Sholeha
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember ITS, Keputih, Sukolilo Surabaya 60111 Indonesia
| | - Surahim Mohamad
- Departement of Chemistry, Faculty of Science, Universiti Putra Malaysia 43400 UPM Serdang Selangor Malaysia
| | - Hasliza Bahruji
- Centre of Advanced Material and Energy Science, Universiti Brunei Darussalam Jalan Tungku Link BE 1410 Brunei Darussalam
| | - Didik Prasetyoko
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember ITS, Keputih, Sukolilo Surabaya 60111 Indonesia
| | - Nurul Widiastuti
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember ITS, Keputih, Sukolilo Surabaya 60111 Indonesia
| | - Nor Aiza Abdul Fatah
- Department of Chemical Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia 81310 UTM, Skudai Johor Bahru Malaysia
| | - Aishah Abdul Jalil
- Department of Chemical Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia 81310 UTM, Skudai Johor Bahru Malaysia.,Centre of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia 81310 UTM, Skudai Johor Bahru Malaysia
| | - Yun Hin Taufiq-Yap
- Departement of Chemistry, Faculty of Science, Universiti Putra Malaysia 43400 UPM Serdang Selangor Malaysia
| |
Collapse
|
9
|
Abstract
As renewable energy source integration increases, P2G technology that can store surplus renewable power as methane is expected to expand. The development of a CO2 methanation catalyst, one of the core processes of the P2G concept, is being actively conducted. In this work, low-rank coal (LRC) was used as a catalyst support for CO2 methanation, as it can potentially enhance the diffusion and adsorption behavior by easily controlling the pore structure and composition. It can also improve the process efficiency owing to its simplicity (no pre-reduction step) and high thermal conductivity, compared to conventional metal oxide-supported catalysts. A screening of single metals (Ni, Co, Ru, Rh, and Pd) on LRC was performed, which showed that Ni was the most active. When Ni on the LRC catalyst was doped with a promoter (Ce and Mg), the CO2 conversion percentage increased by >10% compared to that of the single Ni catalyst. When the CO2 methanation activity was compared at 250–500 °C, the Ce-doped Ni/Eco and Mg-doped Ni/Eco catalysts showed similar or better activity than the commercial metal oxide-supported catalyst. In addition, the catalytic performance remained stable even after the test for an extended time (~200 h). The results of XRD, TEM, and TPR showed that highly efficient LRC-based CO2 methanation catalysts can be made when the metal dispersion and composition are modified.
Collapse
|
10
|
Dwivedi S, Kowalik M, Rosenbach N, Alqarni DS, Shin YK, Yang Y, Mauro JC, Tanksale A, Chaffee AL, van Duin ACT. Atomistic Mechanisms of Thermal Transformation in a Zr-Metal Organic Framework, MIL-140C. J Phys Chem Lett 2021; 12:177-184. [PMID: 33321037 DOI: 10.1021/acs.jpclett.0c02930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
To understand the mechanisms responsible for thermal decomposition of a Zr-MOF (MIL-140C), we perform atomistic-scale molecular dynamics (MD) simulations and discuss the simulation data in comparison with the TEM images obtained for the decomposed Zr-MOF. First, we introduce the ReaxFF parameters suitable for the Zr/C/H/O chemistry and then apply them to investigate the thermal stability and morphological changes in the MIL-140C during heating. Based on the performed simulations we propose an atomic mechanism for the collapse of the MIL-140C and the molecular pathways for carbon monoxide formation, the main product of the MIL-140C thermal degradation. We also determine that the oxidation state of the ZrOx clusters, evolved due to the thermal degradation, approximates the tetragonal phase of ZrO2. Both simulations and experiments show a distribution of very small ZrOx clusters embedded in the disrupted organic sheet that could contribute to the unusual high catalytic activity of the decomposed MIL-140C.
Collapse
Affiliation(s)
- Swarit Dwivedi
- Department of Chemical Engineering, Monash University, Clayton 3800, Victoria, Australia
| | - Malgorzata Kowalik
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Nilton Rosenbach
- Centro Universitário Estadual da Zona Oeste, Avenida Manuel Caldeira de Alvarenga 1203, 23070-200 Campo Grande, Rio de Janeiro, Brazil
| | - Dalal S Alqarni
- School of Chemistry, Monash University, Clayton 3800, Victoria, Australia
| | - Yun Kyung Shin
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Yongjian Yang
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - John C Mauro
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Akshat Tanksale
- Department of Chemical Engineering, Monash University, Clayton 3800, Victoria, Australia
| | - Alan L Chaffee
- School of Chemistry, Monash University, Clayton 3800, Victoria, Australia
| | - Adri C T van Duin
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
11
|
Sun SL, Sun XY, Sun Q, Gao EQ. Highly efficient fluorescent chemosensor for nitro antibiotic detection based on luminescent coordination polymers with 2,6-di(4-carboxyphenyl)pyrazine. CrystEngComm 2021. [DOI: 10.1039/d1ce00245g] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A series of isostructural porous supramolecular frameworks, {[M(DCPP)(H2O)]·(DMF)}n, are synthesized. The as-obtained fluorescent Zn-MOF has good recognition ability towards nitro-antibiotics with low detection limits and a wide linear range.
Collapse
Affiliation(s)
- Shuang-Li Sun
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- P. R. China
| | - Xi-Yu Sun
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- P. R. China
| | - Qian Sun
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- P. R. China
| | - En-Qing Gao
- Shanghai key laboratory of Green Chemistry and Chemical Processes
- School of chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200062
- P. R. China
| |
Collapse
|