1
|
Kuznetsov BN, Chudina AI, Kazachenko AS, Fetisova OY, Borovkova VS, Vorobyev SA, Karacharov AA, Gnidan EV, Mazurova EV, Skripnikov AM, Taran OP. Fractionation of Aspen Wood to Produce Microcrystalline, Microfibrillated and Nanofibrillated Celluloses, Xylan and Ethanollignin. Polymers (Basel) 2023; 15:2671. [PMID: 37376317 DOI: 10.3390/polym15122671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/26/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
A new method for extractive-catalytic fractionation of aspen wood to produce microcrystalline (MCC), microfibrillated (MFC), nanofibrilllated (NFC) celluloses, xylan, and ethanollignin is suggested in order to utilize all of the main components of wood biomass. Xylan is obtained with a yield of 10.2 wt.% via aqueous alkali extraction at room temperature. Ethanollignin was obtained with a yield of 11.2 wt.% via extraction with 60% ethanol from the xylan-free wood at 190 °C. The lignocellulose residue formed after the extraction of xylan and ethanollignin was subjected to catalytic peroxide delignification in the acetic acid-water medium at 100 °C in order to obtain microcrystalline cellulose. MCC is hydrolyzed with 56% sulfuric acid and treated with ultrasound to produce microfibrillated cellulose and nanofibrillated cellulose. The yields of MFC and NFC were 14.4 and 19.0 wt.%, respectively. The average hydrodynamic diameter of NFC particles was 36.6 nm, the crystallinity index was 0.86, and the average zeta-potential was 41.5 mV. The composition and structure of xylan, ethanollignin, cellulose product, MCC, MFC, and NFC obtained from aspen wood were characterized using elemental and chemical analysis, Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) analyses, Gas chromatography (GC), Gel permeation-chromatography (GPC), Scanning electron microscopy (SEM), Atomic force microscopy (AFM), Dynamic light scattering (DLS), Thermal gravimetric analysis (TGA).
Collapse
Affiliation(s)
- Boris N Kuznetsov
- Institute of Chemistry and Chemical Technology, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50/24, Krasnoyarsk 660036, Russia
- Department of Non-Ferrous Metals and Materials Science, Siberian Federal University, pr. Svobodny 79, Krasnoyarsk 660041, Russia
| | - Anna I Chudina
- Institute of Chemistry and Chemical Technology, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50/24, Krasnoyarsk 660036, Russia
| | - Aleksandr S Kazachenko
- Institute of Chemistry and Chemical Technology, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50/24, Krasnoyarsk 660036, Russia
- Department of Non-Ferrous Metals and Materials Science, Siberian Federal University, pr. Svobodny 79, Krasnoyarsk 660041, Russia
| | - Olga Yu Fetisova
- Institute of Chemistry and Chemical Technology, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50/24, Krasnoyarsk 660036, Russia
| | - Valentina S Borovkova
- Institute of Chemistry and Chemical Technology, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50/24, Krasnoyarsk 660036, Russia
- Department of Non-Ferrous Metals and Materials Science, Siberian Federal University, pr. Svobodny 79, Krasnoyarsk 660041, Russia
| | - Sergei A Vorobyev
- Institute of Chemistry and Chemical Technology, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50/24, Krasnoyarsk 660036, Russia
| | - Anton A Karacharov
- Institute of Chemistry and Chemical Technology, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50/24, Krasnoyarsk 660036, Russia
| | - Elena V Gnidan
- Institute of Chemistry and Chemical Technology, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50/24, Krasnoyarsk 660036, Russia
- Department of Non-Ferrous Metals and Materials Science, Siberian Federal University, pr. Svobodny 79, Krasnoyarsk 660041, Russia
| | - Elena V Mazurova
- Institute of Chemistry and Chemical Technology, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50/24, Krasnoyarsk 660036, Russia
| | - Andrey M Skripnikov
- Institute of Chemistry and Chemical Technology, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50/24, Krasnoyarsk 660036, Russia
- Department of Non-Ferrous Metals and Materials Science, Siberian Federal University, pr. Svobodny 79, Krasnoyarsk 660041, Russia
| | - Oxana P Taran
- Institute of Chemistry and Chemical Technology, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50/24, Krasnoyarsk 660036, Russia
- Department of Non-Ferrous Metals and Materials Science, Siberian Federal University, pr. Svobodny 79, Krasnoyarsk 660041, Russia
| |
Collapse
|
2
|
Microfibrillated Cellulose with a Lower Degree of Polymerization; Synthesis via Sulfuric Acid Hydrolysis under Ultrasonic Treatment. Polymers (Basel) 2023; 15:polym15040904. [PMID: 36850188 PMCID: PMC9967114 DOI: 10.3390/polym15040904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/24/2023] [Accepted: 02/06/2023] [Indexed: 02/15/2023] Open
Abstract
A new approach is being considered for obtaining microfibrillated cellulose with a low degree of polymerization by sulfuric acid hydrolysis with simultaneous ultrasonic treatment under mild conditions (temperature 25 °C, 80% power control). Samples of initial cellulose, MCC, and MFC were characterized by FTIR, XRF, SEM, DLS, and TGA. It was found that a high yield of MFC (86.4 wt.%) and a low SP (94) are observed during hydrolysis with ultrasonic treatment for 90 min. It was shown that the resulting microfibrillated cellulose retains the structure of cellulose I and has an IC of 0.74. It was found that MFC particles are a network of fibrils with an average size of 91.2 nm. ζ-potential of an aqueous suspension of MFC equal to -23.3 mV indicates its high stability. It is noted that MFC has high thermal stability, the maximum decomposition temperature is 333.9 °C. Simultaneous hydrolysis process with ultrasonic treatment to isolate MFC from cellulose obtained by oxidative delignification of spruce wood allows to reduce the number of stages, reduce energy costs, and expand the scope.
Collapse
|
3
|
Page JR, Manfredi Z, Bliznakov S, Valla JA. Recent Progress in Electrochemical Upgrading of Bio-Oil Model Compounds and Bio-Oils to Renewable Fuels and Platform Chemicals. MATERIALS (BASEL, SWITZERLAND) 2023; 16:394. [PMID: 36614733 PMCID: PMC9822173 DOI: 10.3390/ma16010394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/23/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Sustainable production of renewable carbon-based fuels and chemicals remains a necessary but immense challenge in the fight against climate change. Bio-oil derived from lignocellulosic biomass requires energy-intense upgrading to produce usable fuels or chemicals. Traditional upgrading methods such as hydrodeoxygenation (HDO) require high temperatures (200−400 °C) and 200 bar of external hydrogen. Electrochemical hydrogenation (ECH), on the other hand, operates at low temperatures (<80 °C), ambient pressure, and does not require an external hydrogen source. These environmental and economically favorable conditions make ECH a promising alternative to conventional thermochemical upgrading processes. ECH combines renewable electricity with biomass conversion and harnesses intermediately generated electricity to produce drop-in biofuels. This review aims to summarize recent studies on bio-oil upgrading using ECH focusing on the development of novel catalytic materials and factors impacting ECH efficiency and products. Here, electrode design, reaction temperature, applied overpotential, and electrolytes are analyzed for their impacts on overall ECH performance. We find that through careful reaction optimization and electrode design, ECH reactions can be tailored to be efficient and selective for the production of renewable fuels and chemicals. Preliminary economic and environmental assessments have shown that ECH can be viable alternative to convention upgrading technologies with the potential to reduce CO2 emissions by 3 times compared to thermochemical upgrading. While the field of electrochemical upgrading of bio-oil has additional challenges before commercialization, this review finds ECH a promising avenue to produce renewable carbon-based drop-in biofuels. Finally, based on the analyses presented in this review, directions for future research areas and optimization are suggested.
Collapse
Affiliation(s)
- Jeffrey R. Page
- Department of Chemical and Biomolecular Engineering, University of Connecticut, 191 Auditorium Rd, Unit 3222, Storrs, CT 06269, USA
- Center for Clean Energy Engineering, University of Connecticut, 44 Weaver Rd, Unit 5233, Storrs, CT 06269, USA
| | - Zachary Manfredi
- Department of Chemical Engineering, Worcester Polytechnic Institute, 100 Institute Rd, Worcester, MA 01609, USA
| | - Stoyan Bliznakov
- Department of Chemical and Biomolecular Engineering, University of Connecticut, 191 Auditorium Rd, Unit 3222, Storrs, CT 06269, USA
- Center for Clean Energy Engineering, University of Connecticut, 44 Weaver Rd, Unit 5233, Storrs, CT 06269, USA
| | - Julia A. Valla
- Department of Chemical and Biomolecular Engineering, University of Connecticut, 191 Auditorium Rd, Unit 3222, Storrs, CT 06269, USA
- Center for Clean Energy Engineering, University of Connecticut, 44 Weaver Rd, Unit 5233, Storrs, CT 06269, USA
| |
Collapse
|
7
|
Fractionation of Birch Wood by Integrating Alkaline-Acid Treatments and Hydrogenation in Ethanol over a Bifunctional Ruthenium Catalyst. Catalysts 2021. [DOI: 10.3390/catal11111362] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
For the first time, the fractionation of birch wood into microcrystalline cellulose, xylose and methoxyphenols is suggested based on the integration of alkali-acid pretreatments and hydrogenation in ethanol over a bifunctional Ru/C catalyst. It is established that removal of hemicelluloses during pretreatments of birch wood influences the yields of the liquid, gaseous and solid products of the non-catalytic and catalytic hydrogenation of pretreated samples in ethanol at 225 °C. The bifunctional Ru/carbon catalyst affects in different ways the conversion and yields of products of hydrogenation of the initial and acid- and alkali-pretreated birch wood. The most noticeable influence is characteristic of the hydrogenation of the acid-pretreated wood, where in contrast to the non-catalytic hydrogenation, the wood conversion and the yields of liquid products increase but the yields of the solid and gaseous products decrease. GC-MS, gel permeation chromatography and elemental analysis were used for characterization of the liquid product composition. The molecular mass distribution of the liquid products of hydrogenation of the initial and pretreated wood shifts towards the low-molecular range in the presence of the catalyst. From the GC-MS data, the contents of monomer compounds, predominantly 4-propylsyringol and 4-propanolsyringol, increase in the presence of the ruthenium catalyst. The solid products of catalytic hydrogenation of the pretreated wood contain up to 95 wt% of cellulose with the structure, similar to that of microcrystalline cellulose.
Collapse
|