1
|
Taiswa A, Maglinao RL, Andriolo JM, Kumar S, Skinner JL. Electrospun Pt-TiO 2 nanofibers Doped with HPA for Catalytic Hydrodeoxygenation. Sci Rep 2024; 14:24706. [PMID: 39433847 PMCID: PMC11493970 DOI: 10.1038/s41598-024-77103-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 10/18/2024] [Indexed: 10/23/2024] Open
Abstract
Electrospinning is utilized to fabricate catalytic nanofiber scaffold for biocrude upgrading in hydrodeoxygenation (HDO) following computational studies suggesting the need for nano-catalysts for efficient HDO conversion and selectivity. Here, Pt-TiO2 nanofibers are fabricated through electrospinning, followed by wet impregnation with a heteropoly acid (HPA), tungstosilicic acid. Intensive heat treatments were incorporated during and after processes to obtain a HPA doped Pt-TiO2 nano-catalyst. Catalytic HDO was performed in a batch reactor with phenol as the raw biocrude dissolved in hexadecane. The HPA doped Pt-TiO2 catalyst demonstrated promising HDO performance of 37.2% conversion and a 78.9% selectivity to oxygen free benzene and the remainder 21.1% as diphenyl ester as a result of esterification by acidic components of the catalyst. Additionally, BET surface area characterization show a low surface area 16.9 m2 g-1 significantly lower than existing commercial catalysts and a mesoporous nature suitable for selectivity. The presence of HPA on the anatase nanofiber compensated for low platinum nanoparticles crystallinity on the nanofibers. This work might create needed alternatives for preparing HDO catalysts for efficient aromatics production.
Collapse
Affiliation(s)
- Amos Taiswa
- Montana Tech Nanotechnology Laboratory, Montana Technological University, Butte, MT, 59701, USA.
- Department of Mechanical Engineering, Montana Technological University, Butte, MT, 59701, USA.
| | - Randy L Maglinao
- Advanced Fuels Center, Montana State University Northern, Havre, MT, 59501, USA
| | - Jessica M Andriolo
- Montana Tech Nanotechnology Laboratory, Montana Technological University, Butte, MT, 59701, USA
- Department of Mechanical Engineering, Montana Technological University, Butte, MT, 59701, USA
| | - Sandeep Kumar
- Department of Civil & Environmental Engineering, Old Dominion University, Norfolk, VA, 23529, USA
| | - Jack L Skinner
- Montana Tech Nanotechnology Laboratory, Montana Technological University, Butte, MT, 59701, USA
- Department of Mechanical Engineering, Montana Technological University, Butte, MT, 59701, USA
| |
Collapse
|
2
|
Yang Z, Xie X, Wei J, Zhang Z, Yu C, Dong S, Chen B, Wang Y, Xiang M, Qin H. Interface engineering Ni/Ni12P5@CNx Mott-Schottky heterojunction tailoring electrocatalytic pathways for zinc-air battery. J Colloid Interface Sci 2023; 642:439-446. [PMID: 37023515 DOI: 10.1016/j.jcis.2023.03.163] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/23/2023] [Accepted: 03/25/2023] [Indexed: 03/31/2023]
Abstract
Due to the poor bifunctional electrocatalytic performances of electrocatalysts in zinc-air battery, herein, we first synthesized Ni/Ni12P5@CNx Mott-Schottky heterojunction to ameliorate the high-cost and instability of precious metals. We modulated the different contents of Ni and Ni12P5 in the Ni/Ni12P5@CNx Mott-Schottky heterojunction, and found that 0.6 Ni/Ni12P5@CNx has outstanding electrocatalytic performances, with half-wave potential of 0.83 V, and OER potential of 1.49 V at 10 mA cm-2. Also, the ΔE value is only 0.66 V. Moreover, 0.6 Ni/Ni12P5@CNx is assembled into ZAB, which has a high power density of 181 mW cm-2 and a high specific capacity of 710 mAh g-1. This indicates it has a good cycle stability. The density functional theory (DFT) calculations reveal that electrons spontaneously flow from Ni to Ni12P5 through the formed buffer layer in the Ni/Ni12P5@CNx Mott-Schottky heterojunction. The Schottky barrier formed modulates the electrocatalytic pathway to have good bifunctional electrocatalytic activity for ORR and OER.
Collapse
|
3
|
Sun R, Tian Y, Xiao L, Bukhtiyarova GA, Wu W. Porous Hollow Nanostructure Promoting the Catalytic Performance and Stability of Ni 3P in Furfural Hydrogenation. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c03327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- Ruyu Sun
- National Center for International Research on Catalytic Technology, Key Laboratory of Chemical Engineering Process & Technology for High-Efficiency Conversion, College of Heilongjiang Province, School of Chemistry and Material Sciences, Heilongjiang University, Harbin 150080, P. R. China
| | - Ye Tian
- National Center for International Research on Catalytic Technology, Key Laboratory of Chemical Engineering Process & Technology for High-Efficiency Conversion, College of Heilongjiang Province, School of Chemistry and Material Sciences, Heilongjiang University, Harbin 150080, P. R. China
| | - Linfei Xiao
- National Center for International Research on Catalytic Technology, Key Laboratory of Chemical Engineering Process & Technology for High-Efficiency Conversion, College of Heilongjiang Province, School of Chemistry and Material Sciences, Heilongjiang University, Harbin 150080, P. R. China
| | | | - Wei Wu
- National Center for International Research on Catalytic Technology, Key Laboratory of Chemical Engineering Process & Technology for High-Efficiency Conversion, College of Heilongjiang Province, School of Chemistry and Material Sciences, Heilongjiang University, Harbin 150080, P. R. China
| |
Collapse
|
4
|
Yu Z, Wang Y, Zhang G, Sun Z, Liu YY, Shi C, Wang W, Wang A. A highly dispersed Ni3P/HZSM-5 catalyst for hydrodeoxygenation of phenolic compounds to cycloalkanes. J Catal 2022. [DOI: 10.1016/j.jcat.2022.04.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Geng Y, Lang M, Li G, Yin W, Yang Z, Li H. Hydrodeoxygenation of Vanillin over Ni2P/Zeolite Catalysts: Role of Surface Acid Density. Catal Letters 2022. [DOI: 10.1007/s10562-022-04021-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Wang S, Jiang N, Zhu T, Zhang Q, Zhang CL, Wang H, Chen Y, Li F, Song H. Synthesis of Highly Active Carbon-encapsulated Ni2P Catalysts by One-step Pyrolysis–phosphidation for Hydrodeoxygenation of Phenolic Compounds. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02238e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrodeoxygenation (HDO) of phenolic compounds is a promising technology to convert biomass materials to value-added chemicals and fuels. However, the development of highly efficient catalysts remains a great challenge. In...
Collapse
|
7
|
Wang J, Zhang M, Li F, Wang H, Chen Y, Song H. Effect of P on hydrodeoxygenation performance of Ni–P/SiO 2 catalysts for upgrading of m-cresol. NEW J CHEM 2022. [DOI: 10.1039/d2nj03482d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ni–P/SiO2-1.0 exhibited much higher MCH selectivity than Ni/SiO2, which is due to the increase in acidity caused by the introduction of P.
Collapse
Affiliation(s)
- Jing Wang
- Provincial Key Laboratory of Oil & Gas Chemical Technology, College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing 163318, Heilongjiang, China
| | - Mei Zhang
- Provincial Key Laboratory of Oil & Gas Chemical Technology, College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing 163318, Heilongjiang, China
| | - Feng Li
- Provincial Key Laboratory of Oil & Gas Chemical Technology, College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing 163318, Heilongjiang, China
| | - Huan Wang
- Provincial Key Laboratory of Oil & Gas Chemical Technology, College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing 163318, Heilongjiang, China
| | - Yanguang Chen
- Provincial Key Laboratory of Oil & Gas Chemical Technology, College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing 163318, Heilongjiang, China
| | - Hua Song
- Provincial Key Laboratory of Oil & Gas Chemical Technology, College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing 163318, Heilongjiang, China
| |
Collapse
|