1
|
Toyama Y, Nakamura T, Horikawa Y, Morinaka Y, Ono Y, Yagi A, Itami K, Ito H. Rh-catalyzed mechanochemical transfer hydrogenation for the synthesis of periphery-hydrogenated polycyclic aromatic compounds. Chem Sci 2025:d5sc01489a. [PMID: 40255961 PMCID: PMC12004081 DOI: 10.1039/d5sc01489a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 04/11/2025] [Indexed: 04/22/2025] Open
Abstract
Hydrogenated nanographene has attracted attention as a new class of nanocarbon material owing to its potential applications in various research fields. However, the synthesis of periphery-hydrogenated nanographenes or polycyclic aromatic hydrocarbons (PAHs) is a significant challenge because of the harsh conditions and poor solubility of the starting materials. Conventional solution-state conditions require high-pressure hydrogen gas and lengthy reaction times. In this study, we developed a novel approach utilizing rhodium-catalyzed mechanochemical transfer hydrogenation, which enables hydrogenation without using hydrogen gas. Various hydrogenated PAHs were rapidly obtained using a simple protocol under ambient atmosphere and air, with one PAH showcasing intriguing properties such as aggregation-induced emission. Thus, the demonstrated mechanochemical hydrogenation method is expected to contribute to the rapid and efficient synthesis of a novel class of sp2/sp3-carbon-conjugated hydrocarbons.
Collapse
Affiliation(s)
- Yoshifumi Toyama
- Graduate School of Science, Nagoya University Chikusa Nagoya 464-8602 Japan
| | - Takumu Nakamura
- Tokyo Research Center, Advanced Materials Research Laboratory, Advanced Integration Research Center, Research Division, Tosoh Corporation 2743-1 Hayakawa Ayase Kanagawa 252-1123 Japan
| | - Yushin Horikawa
- Graduate School of Science, Nagoya University Chikusa Nagoya 464-8602 Japan
| | - Yuta Morinaka
- Tokyo Research Center, Advanced Materials Research Laboratory, Advanced Integration Research Center, Research Division, Tosoh Corporation 2743-1 Hayakawa Ayase Kanagawa 252-1123 Japan
| | - Yohei Ono
- Tokyo Research Center, Advanced Materials Research Laboratory, Advanced Integration Research Center, Research Division, Tosoh Corporation 2743-1 Hayakawa Ayase Kanagawa 252-1123 Japan
| | - Akiko Yagi
- Graduate School of Science, Nagoya University Chikusa Nagoya 464-8602 Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Chikusa Nagoya 464-8602 Japan
| | - Kenichiro Itami
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Chikusa Nagoya 464-8602 Japan
- Molecule Creation Laboratory, Cluster for Pioneering Research, RIKEN Wako Saitama 351-0198 Japan
| | - Hideto Ito
- Graduate School of Science, Nagoya University Chikusa Nagoya 464-8602 Japan
| |
Collapse
|
2
|
Nesterov NS, Pakharukova VP, Philippov AA, Prosvirin IP, Shalygin AS, Martyanov ON. Reductive Transformation of O-, N-, S-Containing Aromatic Compounds under Hydrogen Transfer Conditions: Effect of the Process on the Ni-Based Catalyst. Molecules 2023; 28:7041. [PMID: 37894520 PMCID: PMC10609389 DOI: 10.3390/molecules28207041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
The influence of the reaction medium on the surface structure and properties of a Ni-based catalyst used for the reductive transformations of O-, N-, and S-containing aromatic substrates under hydrogen transfer conditions has been studied. The catalysts were characterized by XRD, XPS, and IR spectroscopy and TEM methods before and after the reductive reaction. It has been shown that the conversion of 1-benzothiophene causes irreversible poisoning of the catalyst surface with the formation of the Ni2S3 phase, whereas the conversion of naphthalene, 1-benzofuran, and indole does not cause any phase change of the catalyst at 250 °C. However, after the indole conversion, the catalyst surface remains enriched with N-containing compounds, which are evenly distributed over the surface.
Collapse
Affiliation(s)
| | | | | | - Igor P. Prosvirin
- Boreskov Institute of Catalysis SB RAS, Academician Lavrentiev Ave. 5, Novosibirsk 630090, Russia (V.P.P.); (A.A.P.); (A.S.S.); (O.N.M.)
| | | | | |
Collapse
|
3
|
Ali HA, Ismail MA, Fouda AEAS, Ghaith EA. A fruitful century for the scalable synthesis and reactions of biphenyl derivatives: applications and biological aspects. RSC Adv 2023; 13:18262-18305. [PMID: 37333795 PMCID: PMC10274569 DOI: 10.1039/d3ra03531j] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 06/10/2023] [Indexed: 06/20/2023] Open
Abstract
This review provides recent developments in the current status and latest synthetic methodologies of biphenyl derivatives. Furthermore, this review investigates detailed discussions of several metalated chemical reactions related to biphenyl scaffolds such as Wurtz-Fittig, Ullmann, Bennett-Turner, Negishi, Kumada, Stille, Suzuki-Miyaura, Friedel-Crafts, cyanation, amination, and various electrophilic substitution reactions supported by their mechanistic pathways. Furthermore, the preconditions required for the existence of axial chirality in biaryl compounds are discussed. Furthermore, atropisomerism as a type of axial chirality in biphenyl molecules is discussed. Additionally, this review covers a wide range of biological and medicinal applications of the synthesized compounds involving patented approaches in the last decade corresponding to investigating the crucial role of the biphenyl structures in APIs.
Collapse
Affiliation(s)
- Hajar A Ali
- Chemistry Department, Faculty of Science, Mansoura University 35516 Mansoura Egypt
| | - Mohamed A Ismail
- Chemistry Department, Faculty of Science, Mansoura University 35516 Mansoura Egypt
| | - Abd El-Aziz S Fouda
- Chemistry Department, Faculty of Science, Mansoura University 35516 Mansoura Egypt
| | - Eslam A Ghaith
- Chemistry Department, Faculty of Science, Mansoura University 35516 Mansoura Egypt
| |
Collapse
|
4
|
Synthesis of Catalytic Precursors Based on Mixed Ni-Al Oxides by Supercritical Antisolvent Co-Precipitation. Catalysts 2022. [DOI: 10.3390/catal12121597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mixed Ni-Al oxide catalytic precursors with different elemental ratios (20, 50, and 80 wt.% Ni0) were synthesized using green supercritical antisolvent co-precipitation (SAS). The obtained oxide precursors and metal catalysts were characterized in detail by X-ray diffraction (XRD) analysis, atomic pair distribution function (PDF) analysis, CO adsorption, and high-resolution transmission electron microscopy (HRTEM). It was found that the composition and structure of the Ni-Al precursors are related to the Ni content. The mixed Ni1−xAlxO oxide with NiO-based crystal structure was formed in the Ni-enriched sample, whereas the highly dispersed NiAl2O4 spinel was observed in the Al-enriched sample. The obtained metal catalysts were tested in the process of anisole H2-free hydrogenation. 2-PrOH was used as a hydrogen donor. The catalyst with 50 wt.% Ni0 demonstrated the highest activity in the hydrogenation process.
Collapse
|
5
|
Effect of Hydrogen-Donor of Heavy Crude Oil Catalytic Aquathermolysis in the Presence of a Nickel-Based Catalyst. Catalysts 2022. [DOI: 10.3390/catal12101154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The transformations of oil components from the Zyuzeevskoye field during catalytic aquathermolysis in the presence of a nickel-containing catalyst precursor and hydrogen donors were studied. It was found that the yield of gasoline and diesel fractions increased by more than 36% in the case of catalytic aquathermolysis in the presence of tetralin. The maximum conversion of asphaltenes was achieved with a simultaneous slowing down of coke formation by four times. The calculation of the structural-group parameters of initial asphaltenes and the products of thermal cracking and catalytic aquathermolysis was made, and the hypothetical construction of their molecular structures was proposed. It was established that the phase composition, ratio, and morphology of nickel catalysts after catalytic aquathermolysis (CA) and catalytic aquathermolysis with tetralin (CA+T) depend on the amount of “free” hydrogen and are represented by Ni0.96S and Ni9S8.
Collapse
|
6
|
Liu YY, Shi XK, Wu CD. Generation of local redox potential from confined nano-bimetals in porous metal silicate materials for high-performance catalysis. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00540a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Confining nano-bimetals in porous metal silicate materials could improve the stabiliy and facilitate electron and charge transfer in catalysis, demonstrating great potential to replace noble metal-based catalysts for industrial applications.
Collapse
Affiliation(s)
- Yang-Yang Liu
- State Key Laboratory of Silicon Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Xiao-Ke Shi
- State Key Laboratory of Silicon Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Chuan-De Wu
- State Key Laboratory of Silicon Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| |
Collapse
|
7
|
Antil N, Kumar A, Akhtar N, Begum W, Chauhan M, Newar R, Rawat MS, Manna K. Chemoselective and Tandem Reduction of Arenes Using a Metal-Organic Framework-Supported Single-Site Cobalt Catalyst. Inorg Chem 2021; 61:1031-1040. [PMID: 34967211 DOI: 10.1021/acs.inorgchem.1c03098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The development of heterogeneous, chemoselective, and tandem catalytic systems using abundant metals is vital for the sustainable synthesis of fine and commodity chemicals. We report a robust and recyclable single-site cobalt-hydride catalyst based on a porous aluminum metal-organic framework (DUT-5 MOF) for chemoselective hydrogenation of arenes. The DUT-5 node-supported cobalt(II) hydride (DUT-5-CoH) is a versatile solid catalyst for chemoselective hydrogenation of a range of nonpolar and polar arenes, including heteroarenes such as pyridines, quinolines, isoquinolines, indoles, and furans to afford cycloalkanes and saturated heterocycles in excellent yields. DUT-5-CoH exhibited excellent functional group tolerance and could be reusable at least five times without decreased activity. The same MOF-Co catalyst was also efficient for tandem hydrogenation-hydrodeoxygenation of aryl carbonyl compounds, including biomass-derived platform molecules such as furfural and hydroxymethylfurfural to cycloalkanes. In the case of hydrogenation of cumene, our spectroscopic, kinetic, and density functional theory (DFT) studies suggest the insertion of a trisubstituted alkene intermediate into the Co-H bond occurring in the turnover limiting step. Our work highlights the potential of MOF-supported single-site base-metal catalysts for sustainable and environment-friendly industrial production of chemicals and biofuels.
Collapse
Affiliation(s)
- Neha Antil
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Ajay Kumar
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Naved Akhtar
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Wahida Begum
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Manav Chauhan
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Rajashree Newar
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Manhar Singh Rawat
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Kuntal Manna
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
8
|
Poisoning effect of N-containing compounds on performance of Raney® nickel in transfer hydrogenation. CATAL COMMUN 2021. [DOI: 10.1016/j.catcom.2021.106361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|