1
|
Carozo AM, López-Tenllado FJ, Herrera-Beurnio MC, Hidalgo-Carrillo J, Martín-Gómez J, Estevez R, Ariza-Pérez A, Urbano FJ, Marinas A. Pt-TiO 2 Systems for Enhanced Hydrogen Production from Glycerol: Direct vs Sequential Incorporation Through Photodeposition. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5109. [PMID: 39459815 PMCID: PMC11509525 DOI: 10.3390/ma17205109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
Pt-TiO2 systems are the most widely used photocatalysts in the production of green hydrogen from glycerol photoreforming. To incorporate metals on the surface of materials, photodeposition is the most used method because it employs mild conditions. However, despite its use, there are some parameters that have not been deeply studied, such as the appropriate metal loading and the method itself, to obtain a better dispersion of Pt. In this work, six Pt-TiO2 catalysts were synthesized by a classical photodeposition method employing UV radiation. The studied Pt wt.% range was 0.15-0.60 wt.%, being incorporated in one step or in subsequent ones. HRTEM analyses showed that both methods allowed a homogeneous distribution of Pt, and in both, the particle size was around 2.3-3.6 nm, increasing with metal loading. The photocatalytic activity of materials was tested in glycerol photoreforming under UV radiation, and the 0.45 wt.% Pt-containing solid that had been synthesized in one step was the one that allowed the highest hydrogen production. This might suggest that around 0.40% is the appropriate metal loading for hydrogen production under these conditions and that incorporating the desired metal percentage in one step is the most efficient method in terms of energy and time savings.
Collapse
Affiliation(s)
| | | | - M. Carmen Herrera-Beurnio
- Departamento de Química Orgánica, Instituto Químico para la Energía y el Medioambiente (IQUEMA), Universidad de Córdoba, E-14071 Córdoba, Spain; (A.M.C.); (F.J.L.-T.); (J.H.-C.); (J.M.-G.); (R.E.); (A.A.-P.); (F.J.U.)
| | | | | | | | | | | | - Alberto Marinas
- Departamento de Química Orgánica, Instituto Químico para la Energía y el Medioambiente (IQUEMA), Universidad de Córdoba, E-14071 Córdoba, Spain; (A.M.C.); (F.J.L.-T.); (J.H.-C.); (J.M.-G.); (R.E.); (A.A.-P.); (F.J.U.)
| |
Collapse
|
2
|
Feng S, Nguyen PTT, Ma X, Yan N. Photorefinery of Biomass and Plastics to Renewable Chemicals using Heterogeneous Catalysts. Angew Chem Int Ed Engl 2024; 63:e202408504. [PMID: 38884612 DOI: 10.1002/anie.202408504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/04/2024] [Accepted: 06/17/2024] [Indexed: 06/18/2024]
Abstract
The photocatalytic conversion of biomass and plastic waste provides opportunities for sustainable fuel and chemical production. Heterogeneous photocatalysts, typically composed of semiconductors with distinctive redox properties in their conduction band (CB) and valence band (VB), facilitate both the oxidative and reductive valorization of organic feedstocks. This article provides a comprehensive overview of recent advancements in the photorefinery of biomass and plastics from the perspective of the redox properties of photocatalysts. We explore the roles of the VB and CB in enhancing the value-added conversion of biomass and plastics via various pathways. Our aim is to bridge the gap between photocatalytic mechanisms and renewable carbon feedstock valorization, inspiring further development in photocatalytic refinery of biomass and plastics.
Collapse
Affiliation(s)
- Shixiang Feng
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Phuc T T Nguyen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Xinbin Ma
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Ning Yan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
- Centre for Hydrogen Innovations, National University of Singapore, Singapore, 117580, Singapore
| |
Collapse
|
3
|
Pan H, Li J, Wang Y, Xia Q, Qiu L, Zhou B. Solar-Driven Biomass Reforming for Hydrogen Generation: Principles, Advances, and Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402651. [PMID: 38816938 PMCID: PMC11304308 DOI: 10.1002/advs.202402651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/23/2024] [Indexed: 06/01/2024]
Abstract
Hydrogen (H2) has emerged as a clean and versatile energy carrier to power a carbon-neutral economy for the post-fossil era. Hydrogen generation from low-cost and renewable biomass by virtually inexhaustible solar energy presents an innovative strategy to process organic solid waste, combat the energy crisis, and achieve carbon neutrality. Herein, the progress and breakthroughs in solar-powered H2 production from biomass are reviewed. The basic principles of solar-driven H2 generation from biomass are first introduced for a better understanding of the reaction mechanism. Next, the merits and shortcomings of various semiconductors and cocatalysts are summarized, and the strategies for addressing the related issues are also elaborated. Then, various bio-based feedstocks for solar-driven H2 production are reviewed with an emphasis on the effect of photocatalysts and catalytic systems on performance. Of note, the concurrent generation of value-added chemicals from biomass reforming is emphasized as well. Meanwhile, the emerging photo-thermal coupling strategy that shows a grand prospect for maximally utilizing the entire solar energy spectrum is also discussed. Further, the direct utilization of hydrogen from biomass as a green reductant for producing value-added chemicals via organic reactions is also highlighted. Finally, the challenges and perspectives of photoreforming biomass toward hydrogen are envisioned.
Collapse
Affiliation(s)
- Hu Pan
- College of BiologicalChemical Science and EngineeringJiaxing University899 Guangqiong RoadJiaxingZhejiang314001China
- Key Laboratory for Power Machinery and Engineering of Ministry of EducationResearch Center for Renewable Synthetic FuelSchool of Mechanical EngineeringShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| | - Jinglin Li
- Key Laboratory for Power Machinery and Engineering of Ministry of EducationResearch Center for Renewable Synthetic FuelSchool of Mechanical EngineeringShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| | - Yangang Wang
- College of BiologicalChemical Science and EngineeringJiaxing University899 Guangqiong RoadJiaxingZhejiang314001China
| | - Qineng Xia
- College of BiologicalChemical Science and EngineeringJiaxing University899 Guangqiong RoadJiaxingZhejiang314001China
| | - Liang Qiu
- Key Laboratory for Power Machinery and Engineering of Ministry of EducationResearch Center for Renewable Synthetic FuelSchool of Mechanical EngineeringShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| | - Baowen Zhou
- Key Laboratory for Power Machinery and Engineering of Ministry of EducationResearch Center for Renewable Synthetic FuelSchool of Mechanical EngineeringShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| |
Collapse
|
4
|
Integration of catalytic methane oxy-reforming and water gas shift membrane reactor for intensified pure hydrogen production and methanation suppression over Ce0.5Zr0.5O2 based catalysts. Catal Today 2023. [DOI: 10.1016/j.cattod.2023.114047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
5
|
De Maron J, Mafessanti R, Gramazio P, Orfei E, Fasolini A, Basile F. H 2 Production by Methane Oxy-Reforming: Effect of Catalyst Pretreatment on the Properties and Activity of Rh-Ce 0.5Zr 0.5O 2 Synthetized by Microemulsion. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:53. [PMID: 36615963 PMCID: PMC9823839 DOI: 10.3390/nano13010053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Green hydrogen introduction in hard-to-abate processes is held back by the cost of substituting steam reforming plants with electrolyzers. However, green hydrogen can be integrated in properly modified reforming processes. The process proposed here involves the substitution of steam reforming with oxy-reforming, which is the coupling of the former with catalytic partial oxidation (CPO), exploiting the pure oxygen coproduced during electrolysis to feed CPO, which allows for better heat exchange thanks to its exothermic nature. With the aim of developing tailored catalysts for the oxy-reforming process, Ce0.5Zr0.5O2 was synthetized by microemulsion and impregnated with Rh. The Ce-based supports were calcined at different temperatures (750 and 900 °C) and the catalysts were reduced at 750 °C or 500 °C. Tuning the calcination temperature allowed for an increase in the support surface area, resulting in well-dispersed Rh species that provided a high reducibility for both the metal active phase and the Ce-based support. This allowed for an increase in methane conversion under different conditions of contact time and pressure and the outperformance of the other catalysts. The higher activity was related to well-dispersed Rh species interacting with the support that provided a high concentration of surface OH* on the Ce-based support and increased methane dissociation. This anticipated the occurrence and the extent of steam reforming over the catalytic bed, producing a smoother thermal profile.
Collapse
Affiliation(s)
- Jacopo De Maron
- “Toso Montanari” Industrial Chemistry Department, Alma Mater Studiorum, Università di Bologna, 40136 Bologna, Italy
- Center for Chemical Catalysis—C3, Alma Mater Studiorum, Università di Bologna, 40136 Bologna, Italy
| | - Rodolfo Mafessanti
- “Toso Montanari” Industrial Chemistry Department, Alma Mater Studiorum, Università di Bologna, 40136 Bologna, Italy
| | - Pio Gramazio
- “Toso Montanari” Industrial Chemistry Department, Alma Mater Studiorum, Università di Bologna, 40136 Bologna, Italy
- Center for Chemical Catalysis—C3, Alma Mater Studiorum, Università di Bologna, 40136 Bologna, Italy
| | - Elisabetta Orfei
- “Toso Montanari” Industrial Chemistry Department, Alma Mater Studiorum, Università di Bologna, 40136 Bologna, Italy
- Center for Chemical Catalysis—C3, Alma Mater Studiorum, Università di Bologna, 40136 Bologna, Italy
| | - Andrea Fasolini
- “Toso Montanari” Industrial Chemistry Department, Alma Mater Studiorum, Università di Bologna, 40136 Bologna, Italy
- Center for Chemical Catalysis—C3, Alma Mater Studiorum, Università di Bologna, 40136 Bologna, Italy
| | - Francesco Basile
- “Toso Montanari” Industrial Chemistry Department, Alma Mater Studiorum, Università di Bologna, 40136 Bologna, Italy
- Center for Chemical Catalysis—C3, Alma Mater Studiorum, Università di Bologna, 40136 Bologna, Italy
| |
Collapse
|
6
|
A facile way to synthesize noble metal free TiO2 based catalysts for glycerol photoreforming. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
7
|
Fakhrutdinova E, Reutova O, Maliy L, Kharlamova T, Vodyankina O, Svetlichnyi V. Laser-Based Synthesis of TiO 2-Pt Photocatalysts for Hydrogen Generation. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7413. [PMID: 36363006 PMCID: PMC9655175 DOI: 10.3390/ma15217413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
The development of visible-light active titanium dioxide is one of the key challenges in photocatalysis that stimulates the development of TiO2-based composite materials and methods for their synthesis. Here, we report the use of pristine and Pt-modified dark titanium dioxide prepared via pulsed laser ablation in liquid (Nd:YAG laser, 1064 nm, 7 ns) for photocatalytic hydrogen evolution from alcohol aqueous solutions. The structure, textural, optical, photoelectrochemical, and electrochemical properties of the materials are studied by a complex of methods including X-ray diffraction, low-temperature nitrogen adsorption, electrophoretic light scattering, diffuse reflection spectroscopy, photoelectrochemical testing, and electrochemical impedance spectroscopy. Both the thermal treatment effect and the effect of modification with platinum on photocatalytic properties of dark titania materials are studied. Optimal compositions and experimental conditions are selected, and high photocatalytic efficiency of the samples in the hydrogen evolution reaction (apparent quantum yield of H2 up to 0.38) is demonstrated when irradiated with soft UV and blue LED, i.e., 375 and 410 nm. The positive effect of low platinum concentrations on the increase in the catalytic activity of dark titania is explained.
Collapse
Affiliation(s)
- Elena Fakhrutdinova
- Laboratory of Advanced Materials and Technology, Tomsk State University, Tomsk 634050, Russia
| | - Olesia Reutova
- Laboratory of Advanced Materials and Technology, Tomsk State University, Tomsk 634050, Russia
| | - Liubov Maliy
- Laboratory of Catalytic Research, Tomsk State University, Tomsk 634050, Russia
| | - Tamara Kharlamova
- Laboratory of Catalytic Research, Tomsk State University, Tomsk 634050, Russia
| | - Olga Vodyankina
- Laboratory of Catalytic Research, Tomsk State University, Tomsk 634050, Russia
| | - Valery Svetlichnyi
- Laboratory of Advanced Materials and Technology, Tomsk State University, Tomsk 634050, Russia
| |
Collapse
|
8
|
Abstract
In the present study, glycerol was oxidized by photocatalysis to glyceraldehyde, formaldehyde, and formic acid. Copper-doped TiO2 was synthesized by the evaporation-induced self-assembly approach and it was used as catalyst during the glycerol photo-oxidation reactions. The prepared mesoporous material exhibited high specific surface area (242 m2/g) and band gap energy reduction of 2.55 eV compared to pure titania (3.2 eV) by the synthesis method due to the presence of copper cations (Cu2+ identified by XPS). The catalyst showed only anatase crystalline phase with nanocrystals around 8 nm and irregular agglomerates below 100 μm. The selectivity and formation rate of the products were favored towards formaldehyde and glyceraldehyde. The variables studied were catalyst amount, reaction temperature, and initial glycerol concentration. The response surface analysis was used to evaluate the effect of the variables on the product’s concentration. The optimized conditions were 0.4 g/L catalyst, 0.1 mol/L glycerol, and temperature 313.15 K. The response values under optimal conditions were 3.23, 8.17, and 1.15 mM for glyceraldehyde, formaldehyde, and formic acid, respectively. A higher selectivity towards formaldehyde was observed when visible light was used as the radiation source. This study is useful to evaluate the best reaction conditions towards value-added products during the oxidation of glycerol by photocatalysis using Cu/TiO2.
Collapse
|
9
|
Fasolini A, Lombardi E, Tabanelli T, Basile F. Microemulsion Derived Titania Nanospheres: An Improved Pt Supported Catalyst for Glycerol Aqueous Phase Reforming. NANOMATERIALS 2021; 11:nano11051175. [PMID: 33947102 PMCID: PMC8144991 DOI: 10.3390/nano11051175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/23/2021] [Accepted: 04/25/2021] [Indexed: 11/23/2022]
Abstract
Glycerol aqueous phase reforming (APR) produces hydrogen and interesting compounds at relatively mild temperatures. Among APR catalysts investigated in literature, little attention has been given to Pt supported on TiO2. Therefore, herein we propose an innovative titania support which can be obtained through an optimized microemulsion technique. This procedure provided high surface area titania nanospheres, with a peculiar high density of weak acidic sites. The material was tested in the catalytic glycerol APR after Pt deposition. A mechanism hypothesis was drawn, which evidenced the pathways giving the main products. When compared with a commercial TiO2 support, the synthetized titania provided higher hydrogen selectivity and glycerol conversion thanks to improved catalytic activity and ability to prompt consecutive dehydrogenation reactions. This was correlated to an enhanced cooperation between Pt nanoparticles and the acid sites of the support.
Collapse
|