1
|
Kumar N, Wagh L, Mehmood S, Das AK, Ghorai TK. Molecular Ni II Complexes as Bifunctional Electrocatalysts for O 2 Evolution and Urea Electro-Oxidation Reaction. Chempluschem 2025:e2500054. [PMID: 40285518 DOI: 10.1002/cplu.202500054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/30/2025] [Accepted: 04/23/2025] [Indexed: 04/29/2025]
Abstract
Developing resilient and robust electrocatalysts devoid of noble metals is vital for facilitating the generation of O2/H2 from water electrolysis, particularly in catalyzing oxygen evolution reaction (OER) and urea oxidation reaction (UOR), respectively. Nickel-based catalysts have attracted as part of global efforts to produce hydrogen from urea-rich wastewater due to their high reaction rates and favorable long-term stability. Two new mononuclear NiII-embedded complexes, namely, [C26H38NiN4O4] (Complex 1) and [C24H32NiF2N4O2] (Complex 2), are explored as a bifunctional catalyst for the OER and UOR herein. Complexes 1 and 2 crystallize in triclinic and monoclinic with space groupP ¯ $p\overbar$ 1 (2) & P 21/c (14), respectively. The OER outcomes of Complex 1 exhibit excellent performance, featuring a lower overpotential of 220 mV and reduced Tafel slope value of 82 mV dec-1 at a benchmarking current density of 10 mA cm-2 in 1 M KOH compared to Complex 2. Additionally, the results of UOR indicate that Complex 1 only requires 1.30 V potential to achieve the same current density which is significantly lower than other counterparts and most reported materials. Chronopotentiometry analysis reveals that Complex 1 is stable up to a longer period of 100 and 20 h in 1 M KOH and alkaline urea electrolyte, respectively.
Collapse
Affiliation(s)
- Niteesh Kumar
- Nanomaterials and Crystal Design Laboratory, Department of Chemistry, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, 484887, India
| | - Lalita Wagh
- Department of Chemistry, Indian Institute of Technology Indore, Indore, 453552, India
| | - Sajid Mehmood
- Nanomaterials and Crystal Design Laboratory, Department of Chemistry, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, 484887, India
| | - Apurba K Das
- Department of Chemistry, Indian Institute of Technology Indore, Indore, 453552, India
| | - Tanmay Kumar Ghorai
- Nanomaterials and Crystal Design Laboratory, Department of Chemistry, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, 484887, India
| |
Collapse
|
2
|
Kou Y, Wang F, Lin Y, Liu D, Li M, Zhang Y, Wen W, Huang J, Weng R, Xu G. Lattice Distortions Promoting the In-Depth Reconstruction of Ni-Based Electrocatalysts with Enriched Oxygen Vacancies for the Electrochemical Oxidation of 5-Hydroxymethylfurfural toward 2,5-Furandicarboxylic Acid. Inorg Chem 2025; 64:1666-1676. [PMID: 39838546 DOI: 10.1021/acs.inorgchem.4c03764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
The electrocatalytic 5-hydroxymethylfurfural (HMF) oxidation reaction (HMFOR) toward 2,5-furandicarboxylic acid (FDCA) has been considered a promising approach for the substitution of the energy-consuming and hazardous oxygen evolution reaction and for the valorization of renewable biomass. However, it is limited by the susceptibility of HMF to the oxidative environment and requires efficient electrocatalysts. Herein, a NiMo complex (NiMo-N) is provided as the precatalyst for the HMFOR, exhibiting favorable performances with a current density of 450 mA·cm-2 achieved at an anodic potential of 1.4 V vs RHE (similarly hereinafter) with 50 mmol/L (mM) HMF and over 95% HMF conversion and FDCA FE for at least five cycles. Combined with quasi situ and in situ analysis, it is confirmed that the extensive lattice distortions in the precatalyst facilitate the in-depth reconstruction, increasing the accessible Ni sites and defective oxygen vacancies (Ov), which would promptly convert to high-valence Ni and active O species during the reaction. The improved performance is then attributed to the incorporation of the improved chemisorption and dehydrogenation ability of HMF by the as-evolved active sites.
Collapse
Affiliation(s)
- Yuanxin Kou
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Material Science, Fujian Normal University, No. 8 Shangsan Road, Fuzhou 350007, China
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Fanan Wang
- Institute of Biology and Chemistry, Fujian University of Technology, Fuzhou 350118, Fujian, China
| | - Yun Lin
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Material Science, Fujian Normal University, No. 8 Shangsan Road, Fuzhou 350007, China
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Di Liu
- Institute of Biology and Chemistry, Fujian University of Technology, Fuzhou 350118, Fujian, China
| | - Mengtao Li
- Institute of Biology and Chemistry, Fujian University of Technology, Fuzhou 350118, Fujian, China
| | - Yan Zhang
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Material Science, Fujian Normal University, No. 8 Shangsan Road, Fuzhou 350007, China
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Wenting Wen
- Institute of Biology and Chemistry, Fujian University of Technology, Fuzhou 350118, Fujian, China
| | - Junhong Huang
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Material Science, Fujian Normal University, No. 8 Shangsan Road, Fuzhou 350007, China
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Rengui Weng
- Institute of Biology and Chemistry, Fujian University of Technology, Fuzhou 350118, Fujian, China
| | - Gang Xu
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Material Science, Fujian Normal University, No. 8 Shangsan Road, Fuzhou 350007, China
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| |
Collapse
|
3
|
Wu F, Wu B, Chen L, Wang Y, Li J, Zhang Q. Dual-site OER mechanism exploration through regulating asymmetric multi-site NiOOH. NANOSCALE 2024; 16:13694-13702. [PMID: 38967458 DOI: 10.1039/d4nr01869a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Asymmetric nickel oxyhydroxide (NiOOH) possesses multi-OH and O active sites on different surfaces, (001) and (001̄), which possibly causes a complicated catalytic process. Density functional theory (DFT) calculations reveal that the unconventional dual-site mechanism (UDSM) of the oxygen evolution reaction (OER) on NiOOH (001) and (001̄) exhibits significantly lower overpotentials of 0.80 and 0.77 V, compared to 1.24 and 1.62 V for the single-site mechanism (SSM), respectively. Through chemical doping or heterojunction modifications, the constructed NiOOH@FeOOH (001̄) heterojunction reduces the thermodynamic overpotential to 0.49 V from original 0.77 V undergoing the UDSM. Although Fe/Co-doping or physical compression yield similar or slightly higher overpotentials and are not conductive to facilitating the OER process by the UDSM, all dual-site paths exhibit obviously lower overpotentials than the SSM for pristine and regulated NiOOH (001) and (001̄) from the whole viewpoint. This work identifies a more reasonable and efficient dual-site OER mechanism, which is expected to help the rational design of highly-efficient electrocatalysts.
Collapse
Affiliation(s)
- Fei Wu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 Zhongguan Road, Ningbo 315201, China.
| | - Biao Wu
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 Zhongguan Road, Ningbo 315201, China.
| | - Liang Chen
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 Zhongguan Road, Ningbo 315201, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunan Wang
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 Zhongguan Road, Ningbo 315201, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiejie Li
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 Zhongguan Road, Ningbo 315201, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiuju Zhang
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 Zhongguan Road, Ningbo 315201, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Diop M, Ndiaye BM, Dieng S, Ngom BD, Chaker M. High electrochemical performance of nickel cobaltite@biomass carbon composite (NiCoO@BC) derived from the bark of Anacardium occidentale for supercapacitor application. RSC Adv 2024; 14:5782-5796. [PMID: 38362084 PMCID: PMC10865185 DOI: 10.1039/d3ra08138a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/24/2024] [Indexed: 02/17/2024] Open
Abstract
Biomass carbon-based materials are highly promising for supercapacitor (SC) electrodes due to their availability, environment-friendliness, and low cost. Herein, an easy energy-saving hydrothermal process was used to produce NiCo2O4/NiOOH (NiCoO) composites with biomass carbon (BC) derived from the bark of Anacardium occidentale (AO) at different synthesis time durations (2 h, 4 h, 8 h, 16 h). The structural and morphological properties of the samples were analysed using XRD, Raman spectroscopy, XPS, SEM, TEM and BET, and the results exhibit the presence of carbon inserted into the nickel-cobalt hydroxide matrix. The NiCoO@BC composite synthesized in 4 h (NiCoO@BC(4 h)) displays a good specific capacitance of 475 F g-1 at 0.5 A g-1 and a low equivalent series resistance (ESR) value of 0.36 Ω. It shows a good coulombic efficiency of 98% and retains 86% of the capacitance after 4000 cycles. The asymmetric supercapacitor (ASC) device (NiCoO@BC(4 h)//AC) assembled using activated carbon (AC) as a negative electrode displays 20 W h kg-1 energy density and 900 W kg-1 power density at 1 A g-1. The stability test shows a good coulombic efficiency of 99% and 78% capacitance retention after 15 000 cycles. These findings imply that NiCoO@BC composites have outstanding electrochemical properties, making them suitable as SC electrode materials.
Collapse
Affiliation(s)
- Modou Diop
- Institut National de la Recherche Scientifique (INRS), Centre - Énergie Matériaux Télécommunications (EMT) 1650, Boul. Lionel Boulet, Varennes Québec J3X 1P7 Canada
- Laboratoire de Photonique Quantique, d'Énergie et de Nano-Fabrication (LPQEN), Faculté des Sciences et Techniques, Université Cheikh Anta Diop de Dakar (UCAD) B.P. 5005 Dakar-Fann Dakar Senegal
| | - Baye Modou Ndiaye
- Institut National de la Recherche Scientifique (INRS), Centre - Énergie Matériaux Télécommunications (EMT) 1650, Boul. Lionel Boulet, Varennes Québec J3X 1P7 Canada
- Laboratoire de Photonique Quantique, d'Énergie et de Nano-Fabrication (LPQEN), Faculté des Sciences et Techniques, Université Cheikh Anta Diop de Dakar (UCAD) B.P. 5005 Dakar-Fann Dakar Senegal
| | - Sokhna Dieng
- Laboratoire de Photonique Quantique, d'Énergie et de Nano-Fabrication (LPQEN), Faculté des Sciences et Techniques, Université Cheikh Anta Diop de Dakar (UCAD) B.P. 5005 Dakar-Fann Dakar Senegal
| | - Balla D Ngom
- Laboratoire de Photonique Quantique, d'Énergie et de Nano-Fabrication (LPQEN), Faculté des Sciences et Techniques, Université Cheikh Anta Diop de Dakar (UCAD) B.P. 5005 Dakar-Fann Dakar Senegal
| | - Mohamed Chaker
- Institut National de la Recherche Scientifique (INRS), Centre - Énergie Matériaux Télécommunications (EMT) 1650, Boul. Lionel Boulet, Varennes Québec J3X 1P7 Canada
| |
Collapse
|
5
|
Assimeddine M, Farid Z, Abdennouri M, Barka N, Lemdek EM, Sadiq M. Improvement of photocatalytic degradation of methyl orange by impregnation of natural clay with nickel: optimization using the Box-Behnken design (BBD). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:62494-62507. [PMID: 36943563 DOI: 10.1007/s11356-023-26417-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 03/08/2023] [Indexed: 05/10/2023]
Abstract
In this research work, the photocatalytic degradation of methyl orange dye was studied on nickel oxide supported on a natural Moroccan clay (Ni/NC). These catalysts have been prepared by dry impregnation of a nickel nitrate solution with different weight percentages (5, 10, 20% NiO). Experimental responses were obtained by a Box-Behnken (BBD) experimental design by varying the catalyst mass, solution pH, and initial dye concentration at three levels (low, medium, and high). The prepared catalysts were characterized using powder X-ray diffraction (XRD) to assess crystallinity and structure, Fourier transform infrared spectroscopy (FTIR) to detect different functional groups, scanning electron microscopy (SEM) combined with energy dispersive X-ray (EDX) analysis to study the surface morphology, and the optical characteristics of the catalysts were studied using absorption and diffuse reflectance measurements in the UV-visible range. The photocatalytic activity of the catalysts was evaluated in aqueous solutions under UV irradiation. ANOVA (analysis of variance) test is employed to recognize the significant factors and their interactions and then give the model equation for the percent dye degradation. The optimal values of the studied factors were determined by numerical optimization, and the results showed that about 100% degradation of the methyl orange dye could be achieved under the following optimal conditions, which are pH = 4.38, catalyst concentration of 0.99 g/L, and initial dye concentration of 30.42 mg/L.
Collapse
Affiliation(s)
- Meryem Assimeddine
- MRI Lab, Research Group SEMA, Sultan Moulay Slimane University of Beni Mellal, FP Khouribga, B.P. 145, 25000, Beni-Mellal, Morocco
| | - Zohra Farid
- MRI Lab, Research Group SEMA, Sultan Moulay Slimane University of Beni Mellal, FP Khouribga, B.P. 145, 25000, Beni-Mellal, Morocco
| | - Mohamed Abdennouri
- MRI Lab, Research Group SEMA, Sultan Moulay Slimane University of Beni Mellal, FP Khouribga, B.P. 145, 25000, Beni-Mellal, Morocco
| | - Noureddine Barka
- MRI Lab, Research Group SEMA, Sultan Moulay Slimane University of Beni Mellal, FP Khouribga, B.P. 145, 25000, Beni-Mellal, Morocco
| | - El Mokhtar Lemdek
- Laboratory of Materials, Membranes, and Nanotechnology, Faculty of Sciences, Moulay Ismail University, Zitoune, PB 11201, 50050, Meknes, Morocco
| | - M'hamed Sadiq
- MRI Lab, Research Group SEMA, Sultan Moulay Slimane University of Beni Mellal, FP Khouribga, B.P. 145, 25000, Beni-Mellal, Morocco.
| |
Collapse
|