1
|
Radhakrishnan P, Sivasamy A. Photocatalytic reduction of chromium(VI) using multiwall carbon nanotubes/bismuth oxide nanocomposite under solar irradiation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:4747-4763. [PMID: 38105325 DOI: 10.1007/s11356-023-31433-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/05/2023] [Indexed: 12/19/2023]
Abstract
Semiconductor photocatalysis is the most efficient advanced oxidation processes for wastewater treatment. A new carbon-based photocatalyst bismuth oxide/multi-walled carbon nanotube (Bi2O3/MWCNT) nanocomposite has a considerable impact on improving photocatalytic performance. Bi2O3/MWCNTs (BMC) nanocomposite was prepared through the hydrothermal processing with 2.5, 5, 7.5 and 10 wt% of MWCNTs. The prepared photocatalysts have been thoroughly examined by various techniques. The X-ray diffraction confirmed the prepared photocatalyst as α-Bi2O3 with high crystallinity. The band gap of Bi2O3 and BMC 7.5 nanocomposite was found to be 2.41 and 1.94 eV. The prepared photocatalyst revealed smooth and porous merged flower-like structure with respect to the addition of MWCNTs. The model pollutant chromium(VI) (Cr(VI)) has been used to check the reduction efficiency of the prepared photocatalyst under solar irradiation. It was found that BMC 7.5 nanocomposite showed enhanced photocatalytic metal ion reduction (87.48%) compared to pristine Bi2O3 (69.29%). The preliminary photocatalytic Cr(VI) ion reduction experiments were carried to determine the photoreduction efficiency of pristine bismuth oxide and bismuth MWCNT nanocomposite. The kinetic study on Cr(VI) ion reduction obeyed pseudo-first-order rate kinetics for both the prepared photocatalysts. The efficiency of the photocatalysts was further analysed by reusing the same up to 3 cycles without loss of the efficacy.
Collapse
Affiliation(s)
- Pravina Radhakrishnan
- Catalysis Science Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai, 600020, India
- Department of Leather Technology, Anna University, Chennai, 600025, India
| | - Arumugam Sivasamy
- Catalysis Science Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai, 600020, India.
- Department of Leather Technology, Anna University, Chennai, 600025, India.
| |
Collapse
|
2
|
Wang J, Zhang Y, Xu X, Bao M. Oxygen Vacancy-Rich Ni-CeO 2 Heterojunction Catalyst for Hydrogenating Halogenated Nitroarenes with High Activity and Selectivity. ACS APPLIED MATERIALS & INTERFACES 2023; 15:8149-8156. [PMID: 36637974 DOI: 10.1021/acsami.2c21272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Halogenated arylamines are important intermediates for the synthesis of dyes, pesticides, herbicides, and other chemicals. One important way to prepare halogenated arylamines is catalytic hydrogenation of halogenated nitroarenes. Ni-based catalysts have been used in the hydrogenation of halogenated nitroarenes but suffer from low activity and dehalogenation side reaction. In this paper, Ni-CeO2/SiO2 heterojunction catalyst with a "raisin-bun" structure was prepared by reverse microemulsion. A built-in electric field and more oxygen vacancies were formed due to electron transfer from Ni to CeO2 as a result of their work function difference. The built-in electric field leads to the heterolytic cleavage of H2, thereby improving the hydrogenation activity. Oxygen vacancies preferentially adsorb and activate nitro groups, inhibiting the dehalogenation side reaction. Through the cooperation of built-in electric field and oxygen vacancy, synchronous enhancement of the activity and selectivity is obtained successfully. This finding provides a new view for the design of non-noble metal-based catalysts with high activity and selectivity.
Collapse
Affiliation(s)
- Jiasheng Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
- School of Chemical Engineering, Dalian University of Technology, Panjin 124221, China
| | - Ying Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
- School of Chemical Engineering, Dalian University of Technology, Panjin 124221, China
| | - Xiaonan Xu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
- School of Chemical Engineering, Dalian University of Technology, Panjin 124221, China
| | - Ming Bao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
- School of Chemical Engineering, Dalian University of Technology, Panjin 124221, China
| |
Collapse
|
3
|
Gold nanoparticles decorated two-dimensional TiO2 nanosheets as effective catalyst for nitroarenes and rhodamine B dye reduction in batch and continuous flow methods. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
4
|
Zhang Y, Zhou J, Wang F, Zhao X. Hybrid Nanostructure Catalyst with Low Loading of Pt for the High-Efficiency Catalytic Hydrogenation of Chloronitrobenzene. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:7699-7708. [PMID: 35699150 DOI: 10.1021/acs.langmuir.2c00531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Fabrication of low-loading, noble-metal, stable, and high-performance metal catalysts remains a thorny issue. Herein, we demonstrate the successful formation of a hybrid nanostructure Pt/TiO2/SBA-15 catalyst (denoted as HNSC-P/T/S; Pt, 0.09%; TiO2, 10%) with satisfactory activity in the hydrogenation of para-chloronitrobenzene (p-CNB). The HNSC-P/T/S showed >99% conversion and a high selectivity of >98%, and the turnover frequency number (TOF) reached 66 766 h-1, which was impossible to achieve with Pt/TiO2 (denoted as P/T) or Pt/SBA-15 (denoted as P/S). The success of the catalytic activity of the HNSC-P/T/S mainly relies on its synergistic effect and special structure, which can fully develop the catalytic ability of Pt, thereby reducing the Pt loading in the noble-based catalyst. Furthermore, the HNSC-P/T/S could also achieve an excellent catalytic activity in the hydrogenation of other nitroarenes. Hence, this work proposes a direction to prepare a noble-based catalyst with a low loading of noble metals for diverse applications.
Collapse
Affiliation(s)
- Yanji Zhang
- School of Chemistry and Materials Engineering, Quzhou University, Quzhou, 324000 Zhejiang Province, China
- Key Laboratory of Green Catalysis and Chemical Reaction Engineering of Hunan Province, School of Chemical Engineering, Xiangtan University, Xiangtan, 411105 Hunan Province, China
| | - Jicheng Zhou
- Key Laboratory of Green Catalysis and Chemical Reaction Engineering of Hunan Province, School of Chemical Engineering, Xiangtan University, Xiangtan, 411105 Hunan Province, China
| | - Fei Wang
- Key Laboratory of Green Catalysis and Chemical Reaction Engineering of Hunan Province, School of Chemical Engineering, Xiangtan University, Xiangtan, 411105 Hunan Province, China
| | - Xingxing Zhao
- Key Laboratory of Green Catalysis and Chemical Reaction Engineering of Hunan Province, School of Chemical Engineering, Xiangtan University, Xiangtan, 411105 Hunan Province, China
| |
Collapse
|
5
|
Zhou S, Wu L, Bai J, Liu X, Lei M, Long M, Huang K. Titanate Nanotubes-Based Heterogeneous Catalyst for Efficient Production of Biomass Derived Chemicals. Front Chem 2022; 10:939289. [PMID: 35734446 PMCID: PMC9207236 DOI: 10.3389/fchem.2022.939289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
The development of efficient heterogeneous catalytic system to convert plentiful biomass to renewable bio-chemicals is urgent need. Titanate nanotubes-based materials obtained from hydrothermal treatment have been reported as low-cost and efficient catalytic materials in chemical syntheses for bio-based chemicals production with interesting catalytic performance. This mini-review expressly revealed the significance and potential of using titanate nanotubes based material as sustainable and environmentally benign solid catalysts/supports for synthesis of various bio-based chemicals, including glycerol-derived solketal, jet fuel range alkanes precursors, biomass-derived esters, aldehydes, aromatic compounds and so on. From the current knowledge on titanate nanotubes-based material via hydrothermal method here summarized, the future lines of research in the field of catalysis/supports for bio-based chemicals production are outlined.
Collapse
Affiliation(s)
- Shuolin Zhou
- School of Elementary Education, Changsha Normal University, Changsha, China
- *Correspondence: Shuolin Zhou, ; Xianxiang Liu,
| | - Lu Wu
- School of Elementary Education, Changsha Normal University, Changsha, China
| | - Junzhuo Bai
- School of Elementary Education, Changsha Normal University, Changsha, China
| | - Xianxiang Liu
- National and Local Joint Engineering Laboratory for New Petro-Chemical Materials and Fine Utilization of Resources, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, China
- *Correspondence: Shuolin Zhou, ; Xianxiang Liu,
| | - Min Lei
- School of Elementary Education, Changsha Normal University, Changsha, China
| | - Min Long
- School of Elementary Education, Changsha Normal University, Changsha, China
| | - Keying Huang
- School of Elementary Education, Changsha Normal University, Changsha, China
| |
Collapse
|
6
|
Arif M, Shahid M, Irfan A, Nisar J, Wu W, Farooqi ZH, Begum R. Polymer microgels for the stabilization of gold nanoparticles and their application in the catalytic reduction of nitroarenes in aqueous media. RSC Adv 2022; 12:5105-5117. [PMID: 35425556 PMCID: PMC8981384 DOI: 10.1039/d1ra09380k] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 01/25/2022] [Indexed: 12/28/2022] Open
Abstract
Polymer microgels containing a polystyrene core and poly(N-isopropylmethacrylamide) shell were synthesized in aqueous media following a free radical precipitation polymerization. Au nanoparticles were fabricated into the shell region of the core–shell microgels denoted as P(STY@NIPM) by the in situ reduction of chloroauric acid with sodium borohydride. Various characterization techniques such as transmission electron microscopy (TEM), ultraviolet–visible spectroscopy (UV-visible) and Fourier transform infrared spectroscopy (FTIR) were used for the characterization of Au–P(STY@NIPM). The catalytic potential of Au–P(STY@NIPM) toward the reductive reaction of 4-nitrophenol (4NP) under various reaction conditions was evaluated. The Arrhenius and Eyring parameters for the catalytic reduction of 4NP were determined to explore the process of catalysis. A variety of nitroarenes were converted successfully into their corresponding aminoarenes with good to excellent yields in the presence of the Au–P(STY@NIPM) system using NaBH4 as a reductant. The Au–P(STY@NIPM) system was found to be an efficient and recyclable catalyst with no significant loss in its catalytic efficiency. A core–shell microgel system was synthesized and used as a micro-reactor for the synthesis of gold nanoparticles. The resulting hybrid system has the ability to catalyze the reduction of various nitroarenes in aqueous media.![]()
Collapse
Affiliation(s)
- Muhammad Arif
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan
- Department of Chemistry, School of Science, University of Management and Technology, Lahore 54770, Pakistan
| | - Muhammad Shahid
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan
| | - Ahmad Irfan
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Jan Nisar
- National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar 25120, Pakistan
| | - Weitai Wu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, The Key Laboratory for Chemical Biology of Fujian Province, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Zahoor H. Farooqi
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan
| | - Robina Begum
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan
| |
Collapse
|