1
|
Kang X, Jiang Y, Shi J, Mao L, Liu Y, Zhai B, Jin H, Guo L. Awakening n-π* electron transition in structurally distorted g-C 3N 4 nanosheets via hexamethylenetetramine-involved supercritical CO 2 treatment towards efficient photocatalytic H 2 production. J Colloid Interface Sci 2025; 685:716-723. [PMID: 39862850 DOI: 10.1016/j.jcis.2025.01.179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/17/2025] [Accepted: 01/19/2025] [Indexed: 01/27/2025]
Abstract
Graphitic carbon nitride (g-C3N4) has been regarded as highly potential photocatalyst for solar energy utilization. However, the restricted absorption of visible light for pristine g-C3N4 significantly limits the solar-light-driven chemical reaction efficiency. Herein, structurally distorted g-C3N4 nanosheets with awakened n-π* electron transition were successfully synthesized through hexamethylenetetramine (HMTA)-involved supercritical CO2 (scCO2) treatment and following pyrolysis of melamine precursor. ScCO2 treatment was conductive to homogeneously dissoving melamine precursor and HMTA, and then the modification by HMTA with three-dimensional structure changed the g-C3N4 photocatalyst from a symmetrical planar structure to an asymmetrical non-planar structure. The resulting awakened n-π* electron transition in structurally distorted g-C3N4 nanosheets greatly extended the photoresponse range of g-C3N4 and increased the amount of catalytically active π electrons. Moreover, the unique distorted structure of g-C3N4 enhanced photogenerated charge carriers separation and provided sufficient reactive sites for photocatalytic H2 production. Consequently, the structurally distorted g-C3N4 nanosheets exhibited enhanced photocatalytic H2 production performance, which was up to 6.4 times that of pristine g-C3N4. This work presents a promising scCO2 strategy towards precursor treatment to regulate the microstructure of g-C3N4, and provides valuable guidance to obtain efficient g-C3N4 photocatalyst by microstructure engineering.
Collapse
Affiliation(s)
- Xing Kang
- International Research Center for Renewable Energy (IRCRE), State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), Xi'an Jiaotong University (XJTU), Xi'an 710049 PR China
| | - Yuzhou Jiang
- International Research Center for Renewable Energy (IRCRE), State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), Xi'an Jiaotong University (XJTU), Xi'an 710049 PR China; Huaneng Shaanxi Power Generation Co., Ltd., Xi'an 710075 PR China
| | - Jinwen Shi
- International Research Center for Renewable Energy (IRCRE), State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), Xi'an Jiaotong University (XJTU), Xi'an 710049 PR China.
| | - Liuhao Mao
- International Research Center for Renewable Energy (IRCRE), State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), Xi'an Jiaotong University (XJTU), Xi'an 710049 PR China
| | - Yanbing Liu
- International Research Center for Renewable Energy (IRCRE), State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), Xi'an Jiaotong University (XJTU), Xi'an 710049 PR China
| | - Binjiang Zhai
- International Research Center for Renewable Energy (IRCRE), State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), Xi'an Jiaotong University (XJTU), Xi'an 710049 PR China
| | - Hui Jin
- International Research Center for Renewable Energy (IRCRE), State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), Xi'an Jiaotong University (XJTU), Xi'an 710049 PR China
| | - Liejin Guo
- International Research Center for Renewable Energy (IRCRE), State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), Xi'an Jiaotong University (XJTU), Xi'an 710049 PR China
| |
Collapse
|
2
|
Zhu T, Wan L, Li R, Zhang M, Li X, Liu Y, Cai D, Lu H. Janus structure hydrogels: recent advances in synthetic strategies, biomedical microstructure and (bio)applications. Biomater Sci 2024; 12:3003-3026. [PMID: 38695621 DOI: 10.1039/d3bm02051g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Janus structure hydrogels (JSHs) are novel materials. Their primary fabrication methods and various applications have been widely reported. JSHs are primarily composed of Janus particles (JNPs) and polysaccharide components. They exhibit two distinct physical or chemical properties, generating intriguing characteristics due to their asymmetric structure. Normally, one side (adhesive interface) is predominantly constituted of polysaccharide components, primarily serving excellent adhesion. On the other side (functional surface), they integrate diverse functionalities, concurrently performing a plethora of synergistic functions. In the biomedical field, JSHs are widely applied in anti-adhesion, drug delivery, wound healing, and other areas. It also exhibits functions in seawater desalination and motion sensing. Thus, JSHs hold broad prospects for applications, and they possess significant research value in nanotechnology, environmental science, healthcare, and other fields. Additionally, this article proposes the challenges and future work facing these fields.
Collapse
Affiliation(s)
- Taifu Zhu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China.
| | - Lei Wan
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China.
| | - Ruiqi Li
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China.
| | - Mu Zhang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China.
| | - Xiaoling Li
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China.
| | - Yilong Liu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China.
| | - Dingjun Cai
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China.
| | - Haibin Lu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China.
- Department of Stomatology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, 510900, China.
| |
Collapse
|
3
|
Mao L, Zhai B, Shi J, Kang X, Lu B, Liu Y, Cheng C, Jin H, Lichtfouse E, Guo L. Supercritical CH 3OH-Triggered Isotype Heterojunction and Groups in g-C 3N 4 for Enhanced Photocatalytic H 2 Evolution. ACS NANO 2024; 18:13939-13949. [PMID: 38749923 DOI: 10.1021/acsnano.4c03922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The structure tuning of bulk graphitic carbon nitride (g-C3N4) is a critical way to promote the charge carriers dynamics for enhancing photocatalytic H2-evolution activity. Exploring feasible post-treatment strategies can lead to effective structure tuning, but it still remains a great challenge. Herein, a supercritical CH3OH (ScMeOH) post-treatment strategy (250-300 °C, 8.1-11.8 MPa) is developed for the structure tuning of bulk g-C3N4. This strategy presented advantages of time-saving (less than 10 min), high yield (over 80%), and scalability due to the enhanced mass transfer and high reactivity of ScMeOH. During the ScMeOH post-treatment process, CH3OH molecules diffused into the interlayers of g-C3N4 and subsequently participated in N-methylation and hydroxylation reactions with the intralayers, resulting in a partial phase transformation from g-C3N4 into carbon nitride with a poly(heptazine imide)-like structure (Q-PHI) as well as abundant methyl and hydroxyl groups. The modified g-C3N4 showed enhanced photocatalytic activity with an H2-evolution rate 7.2 times that of pristine g-C3N4, which was attributed to the synergistic effects of the g-C3N4/Q-PHI isotype heterojunction construction, group modulation, and surface area increase. This work presents a post-treatment strategy for structure tuning of bulk g-C3N4 and serves as a case for the application of supercritical fluid technology in photocatalyst synthesis.
Collapse
Affiliation(s)
- Liuhao Mao
- State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), International Research Center for Renewable Energy (IRCRE), Xi'an Jiaotong University (XJTU), 28 West Xianning Road, Xi'an 710049, China
| | - Binjiang Zhai
- State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), International Research Center for Renewable Energy (IRCRE), Xi'an Jiaotong University (XJTU), 28 West Xianning Road, Xi'an 710049, China
| | - Jinwen Shi
- State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), International Research Center for Renewable Energy (IRCRE), Xi'an Jiaotong University (XJTU), 28 West Xianning Road, Xi'an 710049, China
| | - Xing Kang
- State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), International Research Center for Renewable Energy (IRCRE), Xi'an Jiaotong University (XJTU), 28 West Xianning Road, Xi'an 710049, China
| | - Bingru Lu
- State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), International Research Center for Renewable Energy (IRCRE), Xi'an Jiaotong University (XJTU), 28 West Xianning Road, Xi'an 710049, China
| | - Yanbing Liu
- State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), International Research Center for Renewable Energy (IRCRE), Xi'an Jiaotong University (XJTU), 28 West Xianning Road, Xi'an 710049, China
| | - Cheng Cheng
- State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), International Research Center for Renewable Energy (IRCRE), Xi'an Jiaotong University (XJTU), 28 West Xianning Road, Xi'an 710049, China
| | - Hui Jin
- State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), International Research Center for Renewable Energy (IRCRE), Xi'an Jiaotong University (XJTU), 28 West Xianning Road, Xi'an 710049, China
| | - Eric Lichtfouse
- State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), International Research Center for Renewable Energy (IRCRE), Xi'an Jiaotong University (XJTU), 28 West Xianning Road, Xi'an 710049, China
| | - Liejin Guo
- State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), International Research Center for Renewable Energy (IRCRE), Xi'an Jiaotong University (XJTU), 28 West Xianning Road, Xi'an 710049, China
| |
Collapse
|
4
|
Hyun D, Kim J, Ko H, Shin Y, Park J, Bak S, Lee J, Yang J, Boo JH, Lee H. One-Step Synthesis of Transition Metal Dichalcogenide Quantum Dots Using Only Alcohol Solvents for Indoor-Light Photocatalytic Antibacterial Activity. ACS APPLIED BIO MATERIALS 2023; 6:1970-1980. [PMID: 37134284 DOI: 10.1021/acsabm.3c00176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
In this study, we report a one-step direct synthesis of molybdenum disulfide (MoS2) and tungsten disulfide (WS2) quantum dots (QDs) through a solvothermal reaction using only alcohol solvents and efficient Escherichia coli (E. coli) decompositions as photocatalytic antibacterial agents under visible light irradiation. The solvothermal reaction gives the scission of molybdenum-sulfur (Mo-S) and tungsten-sulfur (W-S) bonding during the synthesis of MoS2 and WS2 QDs. Using only alcohol solvent does not require a residue purification process necessary for metal intercalation. As the number of the CH3 groups of alcohol solvents among ethyl, isopropyl, and tert(t)-butyl alcohols increases, the dispersibility of MoS2/WS2 increases. The CH3 groups of alcohols minimize the surface energy, leading to the effective exfoliation and disintegration of the bulk under heat and pressure. The bulky t-butyl alcohol with the highest number of methyl groups shows the highest exfoliation and yield. MoS2 QDs with a lateral size of about 2.5 nm and WS2 QDs of about 10 nm are prepared, exhibiting a strong blue luminescence under 365 nm ultraviolet (UV) light irradiation. Their heights are 0.68-3 and 0.72-5 nm, corresponding to a few layers of MoS2 and WS2, respectively. They offer a highly efficient performance in sterilizing E. coli as the visible-light-driven photocatalyst.
Collapse
Affiliation(s)
- Daesun Hyun
- Department of Energy Science, Sungkyunkwan University, Suwon 16419, Korea
| | - Joosung Kim
- Department of Energy Science, Sungkyunkwan University, Suwon 16419, Korea
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Sungkyunkwan University, Suwon 16419, Korea
| | - Hyun Ko
- Department of Biophysics, Sungkyunkwan University, Suwon 16419, Korea
| | - Yonghun Shin
- Department of Energy Science, Sungkyunkwan University, Suwon 16419, Korea
| | - Jintaek Park
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
| | - Sora Bak
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
| | - Jihun Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
| | - Junghee Yang
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
| | - Jin-Hyo Boo
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
| | - Hyoyoung Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Sungkyunkwan University, Suwon 16419, Korea
- Department of Biophysics, Sungkyunkwan University, Suwon 16419, Korea
- Creative Research Institute, Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
5
|
Shi W, Cao L, Shi Y, Zhong W, Chen Z, Wei Y, Guo F, Chen L, Du X. Boosted built-in electric field and active sites based on Ni-doped heptazine/triazine crystalline carbon nitride for achieving high-efficient photocatalytic H2 evolution. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
6
|
Gupta S, Gandhi J, Kokate S, Raikar LG, Kopuri VG, Prakash H. Augmented photocatalytic degradation of Acetaminophen using hydrothermally treated g-C 3N 4 and persulfate under LED irradiation. Heliyon 2023; 9:e16450. [PMID: 37305481 PMCID: PMC10256936 DOI: 10.1016/j.heliyon.2023.e16450] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 06/13/2023] Open
Abstract
Photocatalytic degradation of organic pollutants in water using graphitic carbon nitride and persulfate under visible light (g-C3N4/PS system) has been studied. Here, we demonstrate augmentation of photocatalytic degradation of Acetaminophen (AAP) using hydrothermally treated g-C3N4 and PS under 400 nm LED irradiation (HT-g-C3N4/PS system). A pseudo-first-order rate constant (kobs, 0.328 min-1) for degradation of AAP using HT-g-C3N4/PS system was determined to be 15 times higher compared to g-C3N4/PS system (kobs, 0.022 min-1). HT-g-C3N4 showed a higher surface area (81 m2/g) than g-C3N4 (21 m2/g). Photocurrent response for HT-g-C3N4 was higher (1.5 times) than g-C3N4. Moreover, Nyquist plot semicircle for HT-g-C3N4 was smaller compared to g-C3N4. These results confirm effective photoelectron-hole separation and charge-transfer in HT-g-C3N4 compared to g-C3N4. AAP degradation using HT-g-C3N4/PS system was significantly inhibited with O2.- and h+ scavengers compared to 1O2,SO4.- and HO. scavengers. ESR results revealed O2.- formation in HT-g-C3N4/PS system. Moreover, photocurrent measurements reveal AAP oxidation by h+ of HT-g-C3N4 was effective than g-C3N4. HT-g-C3N4 was reused for five cycles in HT-g-C3N4/PS system. Augmented photocatalytic degradation of AAP by HT-g-C3N4/PS system compared to g-C3N4/PS is attributed to effective photoelectron hole separation of HT-g-C3N4 that generates O2.- and h+ for oxidation of pollutant. Importantly, electrical energy per order (EEO) was 7.2 kWh m-3 order-1. kobs for degradation of AAP in simulated groundwater and tap water were determined as 0.029 and 0.035 min-1, respectively. Degradation intermediates of AAP were proposed. AAP ecotoxicity against marine bacteria Aliivibrio fischeri was completely removed after treatment by HT-g-C3N4/PS system.
Collapse
Affiliation(s)
- Smita Gupta
- Energy and Environmental Chemistry Laboratory, Department of Chemistry, Birla Institute of Technology and Science, Pilani, K K Birla Goa Campus, NH17B, Zuarinagar, Goa, 403726, India
| | - Jemi Gandhi
- Energy and Environmental Chemistry Laboratory, Department of Chemistry, Birla Institute of Technology and Science, Pilani, K K Birla Goa Campus, NH17B, Zuarinagar, Goa, 403726, India
| | - Santosh Kokate
- Energy and Environmental Chemistry Laboratory, Department of Chemistry, Birla Institute of Technology and Science, Pilani, K K Birla Goa Campus, NH17B, Zuarinagar, Goa, 403726, India
- Aditya Birla Science & Technology Co. Pvt. Ltd., Taloja, Mumbai, 410208, India
| | - Laxman G. Raikar
- Energy and Environmental Chemistry Laboratory, Department of Chemistry, Birla Institute of Technology and Science, Pilani, K K Birla Goa Campus, NH17B, Zuarinagar, Goa, 403726, India
| | | | - Halan Prakash
- Energy and Environmental Chemistry Laboratory, Department of Chemistry, Birla Institute of Technology and Science, Pilani, K K Birla Goa Campus, NH17B, Zuarinagar, Goa, 403726, India
| |
Collapse
|
7
|
Wu Q, Yang X, Yang J, Liu P, Ding G, Chen Z, Liao G. Size effect of ruthenium nanoparticles on water cracking properties with different crystal planes for boosting electrocatalytic hydrogen evolution. J Colloid Interface Sci 2023; 644:238-245. [PMID: 37119641 DOI: 10.1016/j.jcis.2023.04.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/01/2023] [Accepted: 04/18/2023] [Indexed: 05/01/2023]
Abstract
Small size ruthenium (Ru) nanoparticles have shown remarkable potential for electrocatalytic hydrogen evolution reaction (HER). Nevertheless, the complicated preparation and relatively low activity of small size Ru nanoparticles are two key challenges. In this work, carbon nanotubes supported Ru nanoparticles catalysts (cnts@NC-Ru t °C) with different sizes were prepared via using the combination of L-3,4-dihydroxyphenylalanine (l-dopa) self-polymerization oxidation reaction and different high temperature annealing to study the variation of particle activity with size. Electrochemical test results showed that the optimized cnts@NC-Ru 700 °C catalyst exhibited a very low overpotential at 10 mA/cm2 (21 mV) and tafel slope of 34.93 mV/dec when the mass loading of precious metal per unit area was merely 12.11 μg/cm2 that surpassed most recently reported high-performance Ru based catalyst. The results of density functional theory (DFT) calculation showed that small Ru nanoparticles had abundant active sites, and the H2O dissociation on small Ru nanoparticles (110) surface is quite easy than other surfaces, while (111) surface of small Ru nanoparticles is beneficial for Tafel step of HER. The synergy between (110) and (111) surfaces on the Ru cluster contributes to its outstanding HER performance. This study provides a novel design idea in promoting the preparation method and uncovering the reason of high activity of small size Ru nanoparticles.
Collapse
Affiliation(s)
- Qikang Wu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, PR China
| | - Xiaobo Yang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
| | - Jing Yang
- School of Energy & Power Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Pengfei Liu
- Institute of High Energy Physics, Chinese Academy of Science, Beijing 100049, PR China
| | - Guixiang Ding
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Zheng Chen
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, PR China; State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, PR China.
| | - Guangfu Liao
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| |
Collapse
|
8
|
Geng Z, Bo T, Zhou W, Tan X, Ye J, Yu T. Deciphering the Superior Electronic Transmission Induced by the Li-N Ligand Pairs Boosted Photocatalytic Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206673. [PMID: 36703518 DOI: 10.1002/smll.202206673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/25/2022] [Indexed: 06/18/2023]
Abstract
Atomic level decoration route is designated as one of the attractive methods to regulate both the charge density and band structure of photocatalysts. Moreover, to enable more efficient separation and transport of photocarriers, the construction of novel active sites can enhance both the reactivity and electrical conductivity of the crystal. Herein, an Li-N ligand is constructed via co-doping lithium and nitrogen atoms into ZnIn2 S4 lattice, which achieves a promoted photocatalytic H2 evolution at 9737 µmol g-1 h-1 . The existence of Li-N ligand pairs and the behaviors of photocarriers on L40 N5 ZIS are determined systematically, which also provides a unique insight into the mechanism of the improved photocarrier migration rate. With the introduction of Li-N dual sites, the vacancy form of ZnIn2 S4 has changed and the photocatalytic stability is significantly improved. Interestingly, the change of charge density around Li-N ligand in ZnIn2 S4 is determined by theoretical simulations, as well as the regulated energy barrier of photocatalytic water splitting caused by Li-N dual sites, which act as both adsorption site for H2 O and stronger reactive sites. This work helps to extend the understanding of ZnIn2 S4 and offers a fresh perspective for the creation of a Li-N co-doped photocatalyst.
Collapse
Affiliation(s)
- Zikang Geng
- School of Chemical Engineering and Technology, Tianjin University, No.135, Yaguan Road, Tianjin, 300350, P. R. China
| | - Tingting Bo
- School of Science, Tianjin University, No.135, Yaguan Road, Tianjin, 300350, P. R. China
| | - Wei Zhou
- School of Science, Tianjin University, No.135, Yaguan Road, Tianjin, 300350, P. R. China
| | - Xin Tan
- School of Environmental Science and Engineering, Tianjin University, No.135, Yaguan Road, Tianjin, 300350, P. R. China
- School of Science, Tibet University, No. 36, Jiangsu Road, Lhasa, 850000, P. R. China
| | - Jinhua Ye
- International Center for Materials Nano architectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, 305-0047, Japan
| | - Tao Yu
- School of Chemical Engineering and Technology, Tianjin University, No.135, Yaguan Road, Tianjin, 300350, P. R. China
| |
Collapse
|
9
|
Mishra BP, Biswal L, Das S, Acharya L, Parida K. Architecture and Kinetic Studies of Photocatalytic H 2O 2 Generation and H 2 Evolution through Regulation of Spatial Charge Transfer via Z-Scheme Path over a (001) Facet Engineered TiO 2@MXene/B- g-C 3N 4 Ternary Hybrid. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:957-971. [PMID: 36609164 DOI: 10.1021/acs.langmuir.2c02315] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Spatial charge separation and migration are the critical shortcomings dominating the core energy conversion corridors of photocatalytic systems. Here, a biomimetic multi-interfacial architecture providing strong coupled interaction and rapid charge transmission for photostable and competent photocatalytic H2O2 production and H2 evolution is proposed. The triple-hybrid all-solid-state Z-scheme system was formed with the (001) facet exposed TiO2 nanosheets derived from MXene layers and B-g-C3N4 nanosheets (M/(001)TiO2@BCN) through an electrostatic self-assembly strategy with intimate electronic interaction due to Ti orbital modulation and proper stacking among the hybrids. The metallic and highly conductive MXene layers act as solid state electron mediators in the Z-scheme heterojunction that promote electron-hole separation and migration efficiency. Specifically, the MTBCN-12.5 composite provides optimum yield of H2O2 up to 1480.1 μmol h-1 g-1 and a H2 evolution rate of 408.4 μmol h-1 (with ACE 6.7%), which are 4 and 20 fold greater than the pristine BCN, respectively. The enhanced photocatalytic performance is systematically identified by the increased surface area, higher cathodic and anodic current densities of -1.01 and 2.27 mA cm-2, delayed charge recombination as supported by PL and EIS measurement, and excellent photostability. The Z-scheme charge transfer mechanism is validated by time-resolved photoluminescence (TRPL) analysis, cyclic voltametric analysis, and the radical trapping experiment as detected by PL analysis. This research marks a substantial advancement and establishes the foundation for future design ideas in accelerating charge transfer.
Collapse
Affiliation(s)
- Bhagyashree Priyadarshini Mishra
- Centre for Nano Science and Nano Technology, Institute of Technical Education and Research, Siksha 'O' Anusandhan University, Bhubaneswar751030, India
| | - Lijarani Biswal
- Centre for Nano Science and Nano Technology, Institute of Technical Education and Research, Siksha 'O' Anusandhan University, Bhubaneswar751030, India
| | - Sarmistha Das
- Centre for Nano Science and Nano Technology, Institute of Technical Education and Research, Siksha 'O' Anusandhan University, Bhubaneswar751030, India
| | - Lopamudra Acharya
- Centre for Nano Science and Nano Technology, Institute of Technical Education and Research, Siksha 'O' Anusandhan University, Bhubaneswar751030, India
| | - Kulamani Parida
- Centre for Nano Science and Nano Technology, Institute of Technical Education and Research, Siksha 'O' Anusandhan University, Bhubaneswar751030, India
| |
Collapse
|
10
|
Wen L, Li M, Shi J, Yu T, Liu Y, Liu M, Zhou Z, Guo L. Rational design of covalent heptazine framework photocatalysts with high oxidation ability through reaction-dependent strategy. J Colloid Interface Sci 2023; 630:394-402. [DOI: 10.1016/j.jcis.2022.10.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/12/2022] [Accepted: 10/22/2022] [Indexed: 11/21/2022]
|
11
|
Gu H, Liang F, Wang X, Wu S, Lv G, Zhang H, Zhang S, Lu L, Dong Z. N-doped rutile TiO 2 nanorod@g-C 3N 4 core/shell S-scheme heterojunctions for boosting CO 2 photoreduction activity. Catal Sci Technol 2023. [DOI: 10.1039/d2cy01839j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A novel core/shell structure composed of N-doped rutile TiO2@g-C3N4 (NT@CNx) with an S-scheme heterojunction is successfully synthesized. The S-scheme heterojunction optimizes the electrochemical property and redox ability of the NT@CNx composite.
Collapse
Affiliation(s)
- Haohui Gu
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Feng Liang
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Xiaohan Wang
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Shuaibing Wu
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Gongye Lv
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Haijun Zhang
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Shaowei Zhang
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF, UK
| | - Lilin Lu
- The Hubei Province Key Laboratory of Coal Conversion & New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Zhijun Dong
- The Hubei Province Key Laboratory of Coal Conversion & New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, China
| |
Collapse
|
12
|
Lin B, Ren X, Chen Z, Xiao H, Xu B, Chong B, Yang G. Uniform-embeddable-distributed Ni 3S 2 cocatalyst inside and outside a sheet-like ZnIn 2S 4 photocatalyst for boosting photocatalytic hydrogen evolution. NANOSCALE 2022; 14:16952-16960. [PMID: 36345991 DOI: 10.1039/d2nr05207e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The rational cocatalyst design is considered a significant route to boost the solar-energy conversion efficiency for photocatalytic H2 generation. However, the traditional cocatalyst-loading on the surface of a photocatalyst easily leads to scarce exposed active sites induced by the agglomeration of cocatalysts and a hindrance of the light absorption of the photocatalyst, thus significantly limiting the enhancement of the photocatalytic H2-generation performance. Herein, a new concept of uniform-embeddable-distributed cocatalysts is put forward. Consequently, uniform-embeddable-distributed cocatalysts of Ni3S2 were designed and constructed inside and outside of the nanosheet-like ZnIn2S4 photocatalyst to form a Ni3S2/ZnIn2S4 binary system (UEDNiS/ZIS). The unique uniform-embeddable-distributed Ni3S2 cocatalyst (UEDNiS) could provide abundant exposed active sites, facilitate the spatial separation and ordered transfer of charges inside and outside of ZnIn2S4 nanosheets, and reduce the hydrogen-adsorption free energy for photocatalytic H2-generation reactions. As a result, UEDNiS/ZIS exhibited a high photocatalytic H2-generation rate of 60 μmol h-1 under visible-light irradiation, almost 7.8 and 2.8 times higher than pristine ZnIn2S4 and the traditional surface-loaded Ni3S2/ZnIn2S4 (TSLNiS/ZIS), respectively. This work represents a new cocatalyst-design approach to realize high-efficiency hydrogen evolution in binary heterostructured photocatalytic systems.
Collapse
Affiliation(s)
- Bo Lin
- XJTU-Oxford International Joint Laboratory for Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Xin Ren
- XJTU-Oxford International Joint Laboratory for Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Zihao Chen
- XJTU-Oxford International Joint Laboratory for Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Hang Xiao
- XJTU-Oxford International Joint Laboratory for Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Baorong Xu
- XJTU-Oxford International Joint Laboratory for Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Ben Chong
- XJTU-Oxford International Joint Laboratory for Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Guidong Yang
- XJTU-Oxford International Joint Laboratory for Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
13
|
Sharma MD, Basu M. Nanosheets of In 2S 3/S-C 3N 4-Dots for Solar Water-Splitting in Saline Water. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:12981-12990. [PMID: 36218026 DOI: 10.1021/acs.langmuir.2c02390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Hydrogen generation from splitting of water under the photoelectrochemical (PEC) pathway is considered as the most promising strategy for covering the upcoming fuel crisis by taking care of all environmental issues. In this context, In2S3 can be explored as it is a visible light-active semiconductor with an appropriate band alignment with the water redox potential. Herein, In2S3 nanosheets are developed by the chemical method. The nanosheets of In2S3 absorb high visible light due to the manifold inside scattering and reflection. The PEC activity of In2S3 is enhanced because of the increase in the light absorbance of the materials. In the present work, at 1.18 V versus RHE in 3.5 wt % NaCl, a maximum 2.07 mA/cm2 photocurrent density can be achieved by In2S3 nanosheets. However, In2S3 suffers strongly due to photo-corrosion. To improve the efficacy of the In2S3 nanosheets in saline water, the charge-carrier transportation ability of In2S3 is aimed to increase by decorating S-C3N4-dots on In2S3. The heterostructure of type-II is developed by sensitization of S-C3N4-dots on In2S3. It increases both the transportation of charge carriers as well as separation. In the heterostructure, the transient decay time (τ) increases, which indicates a decrease in photogenerated charge-carrier recombination. S-C3N4-dots also act as an optical antenna and increase the range of visible light absorbance of In2S3. The heterostructure can generate ∼2.38-fold higher photocurrent density of 1.18 V versus RHE in 3.5 wt % NaCl. The photoconversion efficiency of the heterostructure is 0.88% at 0.95 V versus RHE. The nanosheets of In2S3 and In2S3/S-C3N4-dots are stable, and photocurrent density is measured up to 2700 s under continuous back-illumination conditions.
Collapse
Affiliation(s)
- Mamta Devi Sharma
- Department of Chemistry, BITS Pilani, Pilani Campus, Pilani, Rajasthan 333031, India
| | - Mrinmoyee Basu
- Department of Chemistry, BITS Pilani, Pilani Campus, Pilani, Rajasthan 333031, India
| |
Collapse
|
14
|
Cheng H, Wang X, Bai Z, Zhu C, Zhang Z, Zhang Q, Wang Q, Dong H, Xu B. Optimization of PEC and photocathodic protection performance of TiO 2/CuInS 2heterojunction photoanodes. NANOTECHNOLOGY 2022; 34:015703. [PMID: 36150363 DOI: 10.1088/1361-6528/ac9482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
The establishment of heterojunction is a powerful strategy to enhance the photoresponse performance of photoanode. Here, TiO2/CuInS2(T/CIS) composites were prepared via a two-step hydrothermal method, and their morphologies were controlled by adjusting the reaction time. The absorption spectra show that CuInS2can significantly improve the absorption of visible light. The T/CIS2 (2 h reaction time) photoanode exhibited the most outstanding photoelectrochemical (PEC) performance, with a photocurrent density of 168% that of the pure TiO2photoanode. Under simulated sunlight, this photoanode can supply a protective photocurrent of 0.49 mA cm-2and a protective voltage of 0.36 V to stainless steel (304ss), which are about 4 and 2 times those of the TiO2sample. The enhancement in the photocathodic protection performance is attributed to enlarged visible light absorbance and higher charge separation rate. This study demonstrates that the TiO2/CuInS2photoanode is a promising candidate for application in photoinduced cathodic protection of metallic materials.
Collapse
Affiliation(s)
- Hongmei Cheng
- School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing, 10083, People's Republic of China
| | - Xiaotian Wang
- School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing, 10083, People's Republic of China
| | - Zhiming Bai
- School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing, 10083, People's Republic of China
| | - Chuang Zhu
- New Energy (Photovoltaic) Industry Research Center, Qinghai University, Xining, 810016, People's Republic of China
| | - Zhibo Zhang
- School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing, 10083, People's Republic of China
| | - Qiang Zhang
- School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing, 10083, People's Republic of China
| | - Qi Wang
- School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing, 10083, People's Republic of China
| | - Hailiang Dong
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan, Shanxi 030024, People's Republic of China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, Shanxi 030024, People's Republic of China
| | - Bingshe Xu
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan, Shanxi 030024, People's Republic of China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, Shanxi 030024, People's Republic of China
| |
Collapse
|
15
|
Furfural Influences Hydrogen Evolution and Energy Conversion in Photo-Fermentation by Rhodobacter capsulatus. Catalysts 2022. [DOI: 10.3390/catal12090979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Furfural, as a typical byproduct produced during the hydrolysis of lignocellulose biomass, is harmful to the photo fermentation hydrogen production. In this work, the effects of furfural on the photo fermentation hydrogen production by Rhodobacter capsulatus using glucose as substrate were investigated. The characteristics of cell growth, hydrogen production, and fermentation end-products with the addition of different concentrations of furfural (0–20 mM) were studied. The results showed that furfural negatively affected the maximum hydrogen production rate and total hydrogen yield. The maximum hydrogen yield of 2.59 ± 0.13 mol-H2/mol-glucose was obtained without furfural. However, 5 mM furfural showed a 40% increase in cell concentration. Furfural in high concentrations can favor the overproduction and accumulation of inhibitive end-products. Further analysis of energy conversion efficiency showed that most of the energy in the substrate was underused and unconverted when the furfural concentration was high. The maximum glucose consumption (93%) was achieved without furfural, while it dramatically declined to 7% with 20 mM furfural addition. The index of half-maximal inhibitory concentration was calculated as 13.40 mM. Moreover, the possible metabolic pathway of furfural and glucose was discussed.
Collapse
|
16
|
Shi L, Liu H, Ning S, Ye J. Localized surface plasmon resonance effect enhanced Cu/TiO 2 core–shell catalyst for boosting CO 2 hydrogenation reaction. Catal Sci Technol 2022. [DOI: 10.1039/d2cy01327d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Inexpensive and nontoxic Cu/TiO2 catalysts based on the LSPR effect for boosting the CO2 hydrogenation reaction.
Collapse
Affiliation(s)
- Lizi Shi
- TJU-NIMS International Collaboration Laboratory, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Huimin Liu
- School of Chemical and Environmental Engineering, Liaoning University of Technology, Jinzhou 121001, China
| | - Shangbo Ning
- TJU-NIMS International Collaboration Laboratory, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Jinhua Ye
- TJU-NIMS International Collaboration Laboratory, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, P. R. China
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institutes for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
17
|
Su Z, Fang F, Liu S, Wang N, Wan Y, Guo D, Han W, Chang K. Size-dependent Al-doped SrTiO 3 affecting solar-driven overall water splitting. Catal Sci Technol 2022. [DOI: 10.1039/d2cy01146h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The equilibrium relationship between the charge transfer and gas evolution capacities of reasonable size Al-STO nanoparticles induces the balance point of HER and OER half-reactions.
Collapse
Affiliation(s)
- Zhiyuan Su
- Centre for Hydrogenergy, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, PR China
| | - Fan Fang
- Centre for Hydrogenergy, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, PR China
| | - Shuaishuai Liu
- Centre for Hydrogenergy, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, PR China
| | - Ni Wang
- Centre for Hydrogenergy, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, PR China
| | - Yutong Wan
- Centre for Hydrogenergy, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, PR China
| | - Donglei Guo
- Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, 471934, People's Republic of China
| | - Wenjun Han
- Centre for Hydrogenergy, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, PR China
| | - Kun Chang
- Centre for Hydrogenergy, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, PR China
| |
Collapse
|
18
|
Choudhury S, Sahoo U, Pattnayak S, Padhiari S, Tripathy M, Hota G. Hematite nanoparticles decorated nitrogen-doped reduced graphene oxide/graphitic carbon nitride multifunctional heterostructure photocatalyst towards environmental applications. NEW J CHEM 2022. [DOI: 10.1039/d2nj01301k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The carcinogenic heavy metals and aromatic organic compounds linger as wastewater pollutants implying great menace to the ecological balance. To solve these environmental pollution problems, the photocatalytic process is an...
Collapse
|