1
|
Zhang Y, Zhang Y, Tang X, Guo X, Yang Q, Sun H, Wang H, Ling J, Dong J. A transcriptome-wide analysis provides novel insights into how Metabacillus indicus promotes coral larvae metamorphosis and settlement. BMC Genomics 2024; 25:840. [PMID: 39242500 PMCID: PMC11380378 DOI: 10.1186/s12864-024-10742-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 08/28/2024] [Indexed: 09/09/2024] Open
Abstract
BACKGROUND Coral reefs experience frequent and severe disturbances that can overwhelm their natural resilience. In such cases, ecological restoration is essential for coral reef recovery. Sexual reproduction has been reported to present the simplest and most cost-effective means for coral reef restoration. However, larval settlement and post-settlement survival represent bottlenecks for coral recruitment in sexual reproduction. While bacteria play a significant role in triggering coral metamorphosis and settlement in many coral species, the underlying molecular mechanisms remain largely unknown. In this study, we employed a transcriptome-level analysis to elucidate the intricate interactions between bacteria and coral larvae that are crucial for the settlement process. RESULTS High Metabacillus indicus strain cB07 inoculation densities resulted in the successful induction of metamorphosis and settlement of coral Pocillopora damicoris larvae. Compared with controls, inoculated coral larvae exhibited a pronounced increase in the abundance of strain cB07 during metamorphosis and settlement, followed by a significant decrease in total lipid contents during the settled stage. The differentially expressed genes (DEGs) during metamorphosis were significantly enriched in amino acid, protein, fatty acid, and glucose related metabolic pathways. In settled coral larvae induced by strain cB07, there was a significant enrichment of DEGs with essential roles in the establishment of a symbiotic relationship between coral larvae and their symbiotic partners. The photosynthetic efficiency of strain cB07 induced primary polyp holobionts was improved compared to those of the negative controls. In addition, coral primary polyps induced by strain cB07 showed significant improvements in energy storage and survival. CONCLUSIONS Our findings revealed that strain cB07 can promote coral larval settlement and enhance post-settlement survival and fitness. Manipulating coral sexual reproduction with strain cB07 can overcome the current recruitment bottleneck. This innovative approach holds promise for future coral reef restoration efforts.
Collapse
Affiliation(s)
- Yanying Zhang
- Ocean School, Yantai University, Yantai, 264005, China.
| | - Ying Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Xiaoyu Tang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Xiangrui Guo
- Ocean School, Yantai University, Yantai, 264005, China
| | - Qingsong Yang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Shantou, 515041, PR China
| | - Hao Sun
- Ocean School, Yantai University, Yantai, 264005, China
| | - Hanzhang Wang
- Ocean School, Yantai University, Yantai, 264005, China
| | - Juan Ling
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Shantou, 515041, PR China
| | - Junde Dong
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
- Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, China.
- Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Shantou, 515041, PR China.
| |
Collapse
|
2
|
Ma H, Liao H, Dellisanti W, Sun Y, Chan LL, Zhang L. Characterizing the Host Coral Proteome of Platygyra carnosa Using Suspension Trapping (S-Trap). J Proteome Res 2021; 20:1783-1791. [PMID: 33630606 DOI: 10.1021/acs.jproteome.0c00812] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Stony corals form the foundation of coral reefs, which are of prominent ecological and economic significance. A robust workflow for investigating the coral proteome is essential in understanding coral biology. Here we investigated different preparative workflows and characterized the proteome of Platygyra carnosa, a common stony coral of the South China Sea. We found that a combination of bead homogenization with suspension trapping (S-Trap) preparation could yield more than 2700 proteins from coral samples. Annotation using a P. carnosa transcriptome database revealed that the majority of proteins were from the coral host cells (2140, 212, and 427 proteins from host coral, dinoflagellate, and other compartments, respectively). Label-free quantification and functional annotations indicated that a high proportion were involved in protein and redox homeostasis. Furthermore, the S-Trap method achieved good reproducibility in quantitative analysis. Although yielding a low symbiont:host ratio, the method is efficient in characterizing the coral host proteomic landscape, which provides a foundation to explore the molecular basis of the responses of coral host tissues to environmental stressors.
Collapse
Affiliation(s)
- Haiying Ma
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China.,State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China.,Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Herui Liao
- Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Walter Dellisanti
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China.,State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China.,Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Yanni Sun
- Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Leo Lai Chan
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China.,State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China.,Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China.,Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong, China
| | - Liang Zhang
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China.,Key Laboratory of Biochip Technology, Biotech and Health Centre, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
3
|
Yuyama I, Ishikawa M, Nozawa M, Yoshida MA, Ikeo K. Transcriptomic changes with increasing algal symbiont reveal the detailed process underlying establishment of coral-algal symbiosis. Sci Rep 2018; 8:16802. [PMID: 30429501 PMCID: PMC6235891 DOI: 10.1038/s41598-018-34575-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 10/19/2018] [Indexed: 12/21/2022] Open
Abstract
To clarify the establishment process of coral-algal symbiotic relationships, coral transcriptome changes during increasing algal symbiont densities were examined in juvenile corals following inoculation with the algae Symbiodinium goreaui (clade C) and S. trenchii (clade D), and comparison of their transcriptomes with aposymbiotic corals by RNA-sequencing. Since Symbiodinium clades C and D showed very different rates of density increase, comparisons were made of early onsets of both symbionts, revealing that the host behaved differently for each. RNA-sequencing showed that the number of differentially-expressed genes in corals colonized by clade D increased ca. two-fold from 10 to 20 days, whereas corals with clade C showed unremarkable changes consistent with a slow rate of density increase. The data revealed dynamic metabolic changes in symbiotic corals. In addition, the endocytosis pathway was also upregulated, while lysosomal digestive enzymes and the immune system tended to be downregulated as the density of clade D algae increased. The present dataset provides an enormous number of candidate symbiosis-related molecules that exhibit the detailed process by which coral-algal endosymbiosis is established.
Collapse
Affiliation(s)
- Ikuko Yuyama
- Faculty of Life and Environmental Sciences, University of Tsukuba, 111 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan.
| | - Masakazu Ishikawa
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, 17 177, Sweden
| | - Masafumi Nozawa
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachioji, Tokyo, 192-0397, Japan
- Center for Genomics and Bioinformatics, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachioji, Tokyo, 192-0397, Japan
| | - Masa-Aki Yoshida
- Marine Biological Science Section, Education and Research Center for Biological Resources, Faculty of Life and Environmental Science, Shimane University, 194 Kamo, Okinoshima-cho, Oki, Shimane, 685-0024, Japan
| | - Kazuho Ikeo
- Center for Information Biology, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan
| |
Collapse
|
4
|
Huang KJ, Huang ZY, Lin CY, Wang LH, Chou PH, Chen CS, Li HH. Generation of clade- and symbiont-specific antibodies to characterize marker molecules during Cnidaria-Symbiodinium endosymbiosis. Sci Rep 2017; 7:5488. [PMID: 28710419 PMCID: PMC5511166 DOI: 10.1038/s41598-017-05945-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 06/06/2017] [Indexed: 01/24/2023] Open
Abstract
The endosymbiosis between cnidarians and dinoflagellates is responsible for the formation of coral reefs. Changes in molecules have been identified during the process of cnidaria-Symbiodinium endosymbiosis. However, the complexity of the molecular interaction has prevented the establishment of a mechanistic explanation of cellular regulation in this mutualistic symbiosis. To date, no marker molecules have been identified to specifically represent the symbiotic status. Because the endosymbiotic association occurs in the symbiotic gastrodermal cells (SGCs), whole cells of isolated SGCs were used as an antigen to generate monoclonal antibodies (mAb) to screen possible molecular candidates of symbiotic markers. The results showed that one of the generated monoclonal antibodies, 2–6F, specifically recognized clade C symbiotic Symbiodinium but not its free-living counterpart or other Symbiodinium clades. The expression levels of 2–6F mAb-recognized proteins are highly correlated with the symbiotic status, and these proteins were characterized as N-linked glycoproteins via treatment with peptide N-glycosidase F. Furthermore, their glycan moieties were markedly different from those of free-living Symbiodinium, potentially suggesting host regulation of post-translational modification. Consequently, the 2–6F mAb can be used to detect the symbiotic state of corals and investigate the complex molecular interactions in cnidaria-Symbiodinium endosymbiosis.
Collapse
Affiliation(s)
- Kao-Jean Huang
- Institute of Biologics, Development Center for Biotechnology, New Taipei City, 22180, Taiwan
| | - Zi-Yu Huang
- Graduate Institute of Marine Biology, National Dong-Hwa University, Pingtung, 94450, Taiwan
| | - Ching-Yen Lin
- Department of Life Science, National Dong Hwa University, Hualien, 97401, Taiwan
| | - Li-Hsueh Wang
- Graduate Institute of Marine Biology, National Dong-Hwa University, Pingtung, 94450, Taiwan.,Taiwan Coral Research Center, National Museum of Marine Biology and Aquarium, Pingtung, 94450, Taiwan
| | - Pin-Hsiang Chou
- Taiwan Coral Research Center, National Museum of Marine Biology and Aquarium, Pingtung, 94450, Taiwan
| | - Chii-Shiarng Chen
- Graduate Institute of Marine Biology, National Dong-Hwa University, Pingtung, 94450, Taiwan. .,Taiwan Coral Research Center, National Museum of Marine Biology and Aquarium, Pingtung, 94450, Taiwan. .,Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan.
| | - Hsing-Hui Li
- Graduate Institute of Marine Biology, National Dong-Hwa University, Pingtung, 94450, Taiwan. .,Taiwan Coral Research Center, National Museum of Marine Biology and Aquarium, Pingtung, 94450, Taiwan.
| |
Collapse
|
5
|
Mies M, Sumida PYG, Rädecker N, Voolstra CR. Marine Invertebrate Larvae Associated with Symbiodinium: A Mutualism from the Start? Front Ecol Evol 2017. [DOI: 10.3389/fevo.2017.00056] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
6
|
Mies M, Voolstra CR, Castro CB, Pires DO, Calderon EN, Sumida PYG. Expression of a symbiosis-specific gene in Symbiodinium type A1 associated with coral, nudibranch and giant clam larvae. ROYAL SOCIETY OPEN SCIENCE 2017; 4:170253. [PMID: 28573035 PMCID: PMC5451836 DOI: 10.1098/rsos.170253] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 04/27/2017] [Indexed: 06/07/2023]
Abstract
Symbiodinium are responsible for the majority of primary production in coral reefs and found in a mutualistic symbiosis with multiple animal phyla. However, little is known about the molecular signals involved in the establishment of this symbiosis and whether it initiates during host larval development. To address this question, we monitored the expression of a putative symbiosis-specific gene (H+-ATPase) in Symbiodinium A1 ex hospite and in association with larvae of a scleractinian coral (Mussismilia hispida), a nudibranch (Berghia stephanieae) and a giant clam (Tridacna crocea). We acquired broodstock for each host, induced spawning and cultured the larvae. Symbiodinium cells were offered and larval samples taken for each host during the first 72 h after symbiont addition. In addition, control samples including free-living Symbiodinium and broodstock tissue containing symbionts for each host were collected. RNA extraction and RT-PCR were performed and amplified products cloned and sequenced. Our results show that H+-ATPase was expressed in Symbiodinium associated with coral and giant clam larvae, but not with nudibranch larvae, which digested the symbionts. Broodstock tissue for coral and giant clam also expressed H+-ATPase, but not the nudibranch tissue sample. Our results of the expression of H+-ATPase as a marker gene suggest that symbiosis between Symbiodinium and M. hispida and T. crocea is established during host larval development. Conversely, in the case of B. stephanieae larvae, evidence does not support a mutualistic relationship. Our study supports the utilization of H+-ATPase expression as a marker for assessing Symbiodinium-invertebrate relationships with applications for the differentiation of symbiotic and non-symbiotic associations. At the same time, insights from a single marker gene approach are limited and future studies should direct the identification of additional symbiosis-specific genes, ideally from both symbiont and host.
Collapse
Affiliation(s)
- M. Mies
- Oceanographic Institute, University of São Paulo, Praça do Oceanográfico 191, 05508-120 São Paulo, SP, Brazil
| | - C. R. Voolstra
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, 23955-6900 Thuwal, Saudi Arabia
| | - C. B. Castro
- Museu Nacional, Universidade Federal do Rio de Janeiro, Quinta da Boa Vista, s/n, 20940-040 Rio de Janeiro, RJ, Brazil
- Instituto Coral Vivo, Rua dos Coqueiros, 87-45807-000 Santa Cruz Cabrália, BA, Brazil
| | - D. O. Pires
- Museu Nacional, Universidade Federal do Rio de Janeiro, Quinta da Boa Vista, s/n, 20940-040 Rio de Janeiro, RJ, Brazil
- Instituto Coral Vivo, Rua dos Coqueiros, 87-45807-000 Santa Cruz Cabrália, BA, Brazil
| | - E. N. Calderon
- Instituto Coral Vivo, Rua dos Coqueiros, 87-45807-000 Santa Cruz Cabrália, BA, Brazil
- Núcleo em Ecologia e Desenvolvimento Socioambiental de Macaé, Universidade Federal do Rio de Janeiro, Av São José do Barreto, 764-27965-045 Macaé, RJ, Brazil
| | - P. Y. G. Sumida
- Oceanographic Institute, University of São Paulo, Praça do Oceanográfico 191, 05508-120 São Paulo, SP, Brazil
| |
Collapse
|
7
|
Wolfowicz I, Baumgarten S, Voss PA, Hambleton EA, Voolstra CR, Hatta M, Guse A. Aiptasia sp. larvae as a model to reveal mechanisms of symbiont selection in cnidarians. Sci Rep 2016; 6:32366. [PMID: 27582179 PMCID: PMC5007887 DOI: 10.1038/srep32366] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 08/08/2016] [Indexed: 12/20/2022] Open
Abstract
Symbiosis, defined as the persistent association between two distinct species, is an evolutionary and ecologically critical phenomenon facilitating survival of both partners in diverse habitats. The biodiversity of coral reef ecosystems depends on a functional symbiosis with photosynthetic dinoflagellates of the highly diverse genus Symbiodinium, which reside in coral host cells and continuously support their nutrition. The mechanisms underlying symbiont selection to establish a stable endosymbiosis in non-symbiotic juvenile corals are unclear. Here we show for the first time that symbiont selection patterns for larvae of two Acropora coral species and the model anemone Aiptasia are similar under controlled conditions. We find that Aiptasia larvae distinguish between compatible and incompatible symbionts during uptake into the gastric cavity and phagocytosis. Using RNA-Seq, we identify a set of candidate genes potentially involved in symbiosis establishment. Together, our data complement existing molecular resources to mechanistically dissect symbiont phagocytosis in cnidarians under controlled conditions, thereby strengthening the role of Aiptasia larvae as a powerful model for cnidarian endosymbiosis establishment.
Collapse
Affiliation(s)
- Iliona Wolfowicz
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg 69120, Germany
- Graduate Program in Areas of Basic and Applied Biology (GABBA), University of Porto, Porto 4200-465, Portugal
| | - Sebastian Baumgarten
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Philipp A. Voss
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg 69120, Germany
| | | | - Christian R. Voolstra
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Masayuki Hatta
- Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo 112-8610, Japan
| | - Annika Guse
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg 69120, Germany
| |
Collapse
|
8
|
|
9
|
Oakley CA, Ameismeier MF, Peng L, Weis VM, Grossman AR, Davy SK. Symbiosis induces widespread changes in the proteome of the model cnidarianAiptasia. Cell Microbiol 2016; 18:1009-23. [DOI: 10.1111/cmi.12564] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 12/17/2015] [Accepted: 12/22/2015] [Indexed: 01/06/2023]
Affiliation(s)
- Clinton A. Oakley
- School of Biological Sciences; Victoria University of Wellington; Wellington 6012 New Zealand
| | - Michael F. Ameismeier
- Gene Center, Department of Chemistry and Biochemistry; University of Munich; Munich 81377 Germany
| | - Lifeng Peng
- School of Biological Sciences; Victoria University of Wellington; Wellington 6012 New Zealand
| | - Virginia M. Weis
- Department of Integrative Biology; Oregon State University; Corvallis OR 97331 USA
| | - Arthur R. Grossman
- Department of Plant Biology; The Carnegie Institution; Stanford CA 94305 USA
| | - Simon K. Davy
- School of Biological Sciences; Victoria University of Wellington; Wellington 6012 New Zealand
| |
Collapse
|
10
|
Weston AJ, Dunlap WC, Beltran VH, Starcevic A, Hranueli D, Ward M, Long PF. Proteomics links the redox state to calcium signaling during bleaching of the scleractinian coral Acropora microphthalma on exposure to high solar irradiance and thermal stress. Mol Cell Proteomics 2015; 14:585-95. [PMID: 25561505 PMCID: PMC4349979 DOI: 10.1074/mcp.m114.043125] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 08/08/2014] [Indexed: 11/06/2022] Open
Abstract
Shipboard experiments were each performed over a 2 day period to examine the proteomic response of the symbiotic coral Acropora microphthalma exposed to acute conditions of high temperature/low light or high light/low temperature stress. During these treatments, corals had noticeably bleached. The photosynthetic performance of residual algal endosymbionts was severely impaired but showed signs of recovery in both treatments by the end of the second day. Changes in the coral proteome were determined daily and, using recently available annotated genome sequences, the individual contributions of the coral host and algal endosymbionts could be extracted from these data. Quantitative changes in proteins relevant to redox state and calcium metabolism are presented. Notably, expression of common antioxidant proteins was not detected from the coral host but present in the algal endosymbiont proteome. Possible roles for elevated carbonic anhydrase in the coral host are considered: to restore intracellular pH diminished by loss of photosynthetic activity, to indirectly limit intracellular calcium influx linked with enhanced calmodulin expression to impede late-stage symbiont exocytosis, or to enhance inorganic carbon transport to improve the photosynthetic performance of algal symbionts that remain in hospite. Protein effectors of calcium-dependent exocytosis were present in both symbiotic partners. No caspase-family proteins associated with host cell apoptosis, with exception of the autophagy chaperone HSP70, were detected, suggesting that algal loss and photosynthetic dysfunction under these experimental conditions were not due to host-mediated phytosymbiont destruction. Instead, bleaching occurred by symbiont exocytosis and loss of light-harvesting pigments of algae that remain in hospite. These proteomic data are, therefore, consistent with our premise that coral endosymbionts can mediate their own retention or departure from the coral host, which may manifest as "symbiont shuffling" of Symbiodinium clades in response to environmental stress.
Collapse
Affiliation(s)
- Andrew J Weston
- From the ‡King's College London Proteomics Facility, Institute of Psychiatry, London SE5 8AF, UK
| | - Walter C Dunlap
- §Centre for Marine Microbiology and Genetics, Australian Institute of Marine Science, PMB No. 3 Townsville MC, Townsville, Queensland,4810 Australia. ‖Institute of Pharmaceutical Science, Kings College, Strand, London WC2R 2LS, United Kingdom
| | - Victor H Beltran
- §Centre for Marine Microbiology and Genetics, Australian Institute of Marine Science, PMB No. 3 Townsville MC, Townsville, Queensland,4810 Australia. ¶ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville QLD 4811 Australia
| | - Antonio Starcevic
- ‡‡Section for Bioinformatics, Department of Biochemical Engineering, Faculty of Food Technology & Biotechnology, University of Zagreb, Pierottijeva 6, HR-10000 Zagreb, Croatia
| | - Daslav Hranueli
- ‡‡Section for Bioinformatics, Department of Biochemical Engineering, Faculty of Food Technology & Biotechnology, University of Zagreb, Pierottijeva 6, HR-10000 Zagreb, Croatia
| | - Malcolm Ward
- From the ‡King's College London Proteomics Facility, Institute of Psychiatry, London SE5 8AF, UK
| | - Paul F Long
- ‖Institute of Pharmaceutical Science, Kings College, Strand, London WC2R 2LS, United Kingdom, **Department of Chemistry, King's College Strand, London WC2R 2LS, United Kingdom, Franklin-Wilkins Building, Stamford Street, London SE1 9NH, UK
| |
Collapse
|
11
|
Meyer E, Weis VM. Study of cnidarian-algal symbiosis in the "omics" age. THE BIOLOGICAL BULLETIN 2012; 223:44-65. [PMID: 22983032 DOI: 10.1086/bblv223n1p44] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The symbiotic associations between cnidarians and dinoflagellate algae (Symbiodinium) support productive and diverse ecosystems in coral reefs. Many aspects of this association, including the mechanistic basis of host-symbiont recognition and metabolic interaction, remain poorly understood. The first completed genome sequence for a symbiotic anthozoan is now available (the coral Acropora digitifera), and extensive expressed sequence tag resources are available for a variety of other symbiotic corals and anemones. These resources make it possible to profile gene expression, protein abundance, and protein localization associated with the symbiotic state. Here we review the history of "omics" studies of cnidarian-algal symbiosis and the current availability of sequence resources for corals and anemones, identifying genes putatively involved in symbiosis across 10 anthozoan species. The public availability of candidate symbiosis-associated genes leaves the field of cnidarian-algal symbiosis poised for in-depth comparative studies of sequence diversity and gene expression and for targeted functional studies of genes associated with symbiosis. Reviewing the progress to date suggests directions for future investigations of cnidarian-algal symbiosis that include (i) sequencing of Symbiodinium, (ii) proteomic analysis of the symbiosome membrane complex, (iii) glycomic analysis of Symbiodinium cell surfaces, and (iv) expression profiling of the gastrodermal cells hosting Symbiodinium.
Collapse
Affiliation(s)
- Eli Meyer
- Department of Zoology, Oregon State University, Corvallis, Oregon 97331, USA.
| | | |
Collapse
|
12
|
Weston AJ, Dunlap WC, Shick JM, Klueter A, Iglic K, Vukelic A, Starcevic A, Ward M, Wells ML, Trick CG, Long PF. A profile of an endosymbiont-enriched fraction of the coral Stylophora pistillata reveals proteins relevant to microbial-host interactions. Mol Cell Proteomics 2012; 11:M111.015487. [PMID: 22351649 DOI: 10.1074/mcp.m111.015487] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
This study examines the response of Symbiodinium sp. endosymbionts from the coral Stylophora pistillata to moderate levels of thermal "bleaching" stress, with and without trace metal limitation. Using quantitative high throughput proteomics, we identified 8098 MS/MS events relating to individual peptides from the endosymbiont-enriched fraction, including 109 peptides meeting stringent criteria for quantification, of which only 26 showed significant change in our experimental treatments; 12 of 26 increased expression in response to thermal stress with little difference affected by iron limitation. Surprisingly, there were no significant increases in antioxidant or heat stress proteins; those induced to higher expression were generally involved in protein biosynthesis. An outstanding exception was a massive 114-fold increase of a viral replication protein indicating that thermal stress may substantially increase viral load and thereby contribute to the etiology of coral bleaching and disease. In the absence of a sequenced genome for Symbiodinium or other photosymbiotic dinoflagellate, this proteome reveals a plethora of proteins potentially involved in microbial-host interactions. This includes photosystem proteins, DNA repair enzymes, antioxidant enzymes, metabolic redox enzymes, heat shock proteins, globin hemoproteins, proteins of nitrogen metabolism, and a wide range of viral proteins associated with these endosymbiont-enriched samples. Also present were 21 unusual peptide/protein toxins thought to originate from either microbial consorts or from contamination by coral nematocysts. Of particular interest are the proteins of apoptosis, vesicular transport, and endo/exocytosis, which are discussed in context of the cellular processes of coral bleaching. Notably, the protein complement provides evidence that, rather than being expelled by the host, stressed endosymbionts may mediate their own departure.
Collapse
Affiliation(s)
- Andrew J Weston
- King's College London Proteomics Facility, Institute of Psychiatry, London SE5 8AF, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Boutet I, Ripp R, Lecompte O, Dossat C, Corre E, Tanguy A, Lallier FH. Conjugating effects of symbionts and environmental factors on gene expression in deep-sea hydrothermal vent mussels. BMC Genomics 2011; 12:530. [PMID: 22034982 PMCID: PMC3218092 DOI: 10.1186/1471-2164-12-530] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 10/28/2011] [Indexed: 11/17/2022] Open
Abstract
Background The deep-sea hydrothermal vent mussel Bathymodiolus azoricus harbors thiotrophic and methanotrophic symbiotic bacteria in its gills. While the symbiotic relationship between this hydrothermal mussel and these chemoautotrophic bacteria has been described, the molecular processes involved in the cross-talking between symbionts and host, in the maintenance of the symbiois, in the influence of environmental parameters on gene expression, and in transcriptome variation across individuals remain poorly understood. In an attempt to understand how, and to what extent, this double symbiosis affects host gene expression, we used a transcriptomic approach to identify genes potentially regulated by symbiont characteristics, environmental conditions or both. This study was done on mussels from two contrasting populations. Results Subtractive libraries allowed the identification of about 1000 genes putatively regulated by symbiosis and/or environmental factors. Microarray analysis showed that 120 genes (3.5% of all genes) were differentially expressed between the Menez Gwen (MG) and Rainbow (Rb) vent fields. The total number of regulated genes in mussels harboring a high versus a low symbiont content did not differ significantly. With regard to the impact of symbiont content, only 1% of all genes were regulated by thiotrophic (SOX) and methanotrophic (MOX) bacteria content in MG mussels whereas 5.6% were regulated in mussels collected at Rb. MOX symbionts also impacted a higher proportion of genes than SOX in both vent fields. When host transcriptome expression was analyzed with respect to symbiont gene expression, it was related to symbiont quantity in each field. Conclusions Our study has produced a preliminary description of a transcriptomic response in a hydrothermal vent mussel host of both thiotrophic and methanotrophic symbiotic bacteria. This model can help to identify genes involved in the maintenance of symbiosis or regulated by environmental parameters. Our results provide evidence of symbiont effect on transcriptome regulation, with differences related to type of symbiont, even though the relative percentage of genes involved remains limited. Differences observed between the vent site indicate that environment strongly influences transcriptome regulation and impacts both activity and relative abundance of each symbiont. Among all these genes, those participating in recognition, the immune system, oxidative stress, and energy metabolism constitute new promising targets for extended studies on symbiosis and the effect of environmental parameters on the symbiotic relationships in B. azoricus.
Collapse
Affiliation(s)
- Isabelle Boutet
- CNRS, UMR 7144, Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, 29682 Roscoff, France.
| | | | | | | | | | | | | |
Collapse
|
14
|
Environmental symbiont acquisition may not be the solution to warming seas for reef-building corals. PLoS One 2010; 5:e13258. [PMID: 20949064 PMCID: PMC2951366 DOI: 10.1371/journal.pone.0013258] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Accepted: 08/26/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Coral reefs worldwide are in decline. Much of the mortality can be attributed to coral bleaching (loss of the coral's intracellular photosynthetic algal symbiont) associated with global warming. How corals will respond to increasing oceanic temperatures has been an area of extensive study and debate. Recovery after a bleaching event is dependent on regaining symbionts, but the source of repopulating symbionts is poorly understood. Possibilities include recovery from the proliferation of endogenous symbionts or recovery by uptake of exogenous stress-tolerant symbionts. METHODOLOGY/PRINCIPAL FINDINGS To test one of these possibilities, the ability of corals to acquire exogenous symbionts, bleached colonies of Porites divaricata were exposed to symbiont types not normally found within this coral and symbiont acquisition was monitored. After three weeks exposure to exogenous symbionts, these novel symbionts were detected in some of the recovering corals, providing the first experimental evidence that scleractinian corals are capable of temporarily acquiring symbionts from the water column after bleaching. However, the acquisition was transient, indicating that the new symbioses were unstable. Only those symbiont types present before bleaching were stable upon recovery, demonstrating that recovery was from the resident in situ symbiont populations. CONCLUSIONS/SIGNIFICANCE These findings suggest that some corals do not have the ability to adjust to climate warming by acquiring and maintaining exogenous, more stress-tolerant symbionts. This has serious ramifications for the success of coral reefs and surrounding ecosystems and suggests that unless actions are taken to reverse it, climate change will lead to decreases in biodiversity and a loss of coral reefs.
Collapse
|
15
|
Coral larvae exhibit few measurable transcriptional changes during the onset of coral-dinoflagellate endosymbiosis. Mar Genomics 2010; 3:107-16. [PMID: 21798204 DOI: 10.1016/j.margen.2010.08.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 08/05/2010] [Accepted: 08/07/2010] [Indexed: 01/11/2023]
Abstract
The cellular mechanisms controlling the successful establishment of a stable mutualism between cnidarians and their dinoflagellate partners are largely unknown. The planula larva of the solitary Hawaiian scleractinian coral Fungia scutaria and its dinoflagellate symbiont Symbiodinium sp. type C1f represents an ideal model for studying the onset of cnidarian-dinoflagellate endosymbiosis due to the predictable availability of gametes, the ability to raise non-symbiotic larvae and establish the symbiosis experimentally, and the ability to precisely quantify infection success. The goal of this study was to identify genes differentially expressed in F. scutaria larvae during the initiation of endosymbiosis with Symbiodinium sp. C1f. Newly symbiotic larvae were compared to non-symbiotic larvae using a custom cDNA microarray. The 5184-feature array was constructed with cDNA libraries from newly symbiotic and non-symbiotic F. scutaria larvae, including 3072 features (60%) that were enriched for either state by subtractive hybridization. Our analyses revealed very few changes in the F. scutaria transcriptome as a result of infection with Symbiodinium sp. C1f, similar to other studies focused on the early stages of this symbiotic interaction. We suggest that these results may be due, in part, to an inability to detect the transcriptional signal from the small percentage of infected cells compared to uninfected cells. We discuss several other potential explanations for this result, including suggesting that certain types of Symbiodinium sp. may have evolved mechanisms to suppress or circumvent cnidarian host responses to infection.
Collapse
|
16
|
Bertucci A, Tambutté É, Tambutté S, Allemand D, Zoccola D. Symbiosis-dependent gene expression in coral-dinoflagellate association: cloning and characterization of a P-type H+-ATPase gene. Proc Biol Sci 2010; 277:87-95. [PMID: 19793745 PMCID: PMC2842621 DOI: 10.1098/rspb.2009.1266] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Accepted: 09/07/2009] [Indexed: 11/12/2022] Open
Abstract
We report the molecular cloning of a H(+)-ATPase in the symbiotic dinoflagellate, Symbiodinium sp. previously suggested by pharmacological studies to be involved in carbon-concentrating mechanism used by zooxanthellae when they are in symbiosis with corals. This gene encodes a protein of 975 amino acids with a calculated mass of about 105 kDa. The structure of the protein shows a typical P-type H(+)-ATPase structure (type IIIa plasma membrane H(+)-ATPases) and phylogenetic analyses show that this new proton pump groups with diatoms in the Chromoalveolates group. This Symbiodinium H(+)-ATPase is specifically expressed when zooxanthellae are engaged in a symbiotic relationship with the coral partner but not in free-living dinoflagellates. This proton pump, therefore, could be involved in the acidification of the perisymbiotic space leading to bicarbonate dehydration by carbonic anhydrase activity in order to supply inorganic carbon for photosynthesis as suggested by earlier studies. To our knowledge, this work provides the first example of a symbiosis-dependent gene in zooxanthellae and confirms the importance of H(+)-ATPase in coral-dinoflagellate symbiosis.
Collapse
Affiliation(s)
| | | | | | | | - Didier Zoccola
- Centre Scientifique de Monaco, Avenue Saint Martin 98000, Monaco
| |
Collapse
|
17
|
Vidal-Dupiol J, Adjeroud M, Roger E, Foure L, Duval D, Mone Y, Ferrier-Pages C, Tambutte E, Tambutte S, Zoccola D, Allemand D, Mitta G. Coral bleaching under thermal stress: putative involvement of host/symbiont recognition mechanisms. BMC PHYSIOLOGY 2009; 9:14. [PMID: 19653882 PMCID: PMC2728513 DOI: 10.1186/1472-6793-9-14] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Accepted: 08/04/2009] [Indexed: 02/02/2023]
Abstract
BACKGROUND Coral bleaching can be defined as the loss of symbiotic zooxanthellae and/or their photosynthetic pigments from their cnidarian host. This major disturbance of reef ecosystems is principally induced by increases in water temperature. Since the beginning of the 1980s and the onset of global climate change, this phenomenon has been occurring at increasing rates and scales, and with increasing severity. Several studies have been undertaken in the last few years to better understand the cellular and molecular mechanisms of coral bleaching but the jigsaw puzzle is far from being complete, especially concerning the early events leading to symbiosis breakdown. The aim of the present study was to find molecular actors involved early in the mechanism leading to symbiosis collapse. RESULTS In our experimental procedure, one set of Pocillopora damicornis nubbins was subjected to a gradual increase of water temperature from 28 degrees C to 32 degrees C over 15 days. A second control set kept at constant temperature (28 degrees C). The differentially expressed mRNA between the stressed states (sampled just before the onset of bleaching) and the non stressed states (control) were isolated by Suppression Subtractive Hybridization. Transcription rates of the most interesting genes (considering their putative function) were quantified by Q-RT-PCR, which revealed a significant decrease in transcription of two candidates six days before bleaching. RACE-PCR experiments showed that one of them (PdC-Lectin) contained a C-Type-Lectin domain specific for mannose. Immunolocalisation demonstrated that this host gene mediates molecular interactions between the host and the symbionts suggesting a putative role in zooxanthellae acquisition and/or sequestration. The second gene corresponds to a gene putatively involved in calcification processes (Pdcyst-rich). Its down-regulation could reflect a trade-off mechanism leading to the arrest of the mineralization process under stress. CONCLUSION Under thermal stress zooxanthellae photosynthesis leads to intense oxidative stress in the two partners. This endogenous stress can lead to the perception of the symbiont as a toxic partner for the host. Consequently, we propose that the bleaching process is due in part to a decrease in zooxanthellae acquisition and/or sequestration. In addition to a new hypothesis in coral bleaching mechanisms, this study provides promising biomarkers for monitoring coral health.
Collapse
Affiliation(s)
- Jeremie Vidal-Dupiol
- UMR 5244, CNRS EPHE UPVD, Université de Perpignan, 52 Avenue Paul Alduy, 66860 Perpignan Cedex, France
| | - Mehdi Adjeroud
- UMR 5244, CNRS EPHE UPVD, Université de Perpignan, 52 Avenue Paul Alduy, 66860 Perpignan Cedex, France
| | - Emmanuel Roger
- UMR 5244, CNRS EPHE UPVD, Université de Perpignan, 52 Avenue Paul Alduy, 66860 Perpignan Cedex, France
| | - Laurent Foure
- Aquarium du Cap d'Agde, 11 rue des 2 freres, 34300 Cap d'Agde, France
| | - David Duval
- UMR 5244, CNRS EPHE UPVD, Université de Perpignan, 52 Avenue Paul Alduy, 66860 Perpignan Cedex, France
| | - Yves Mone
- UMR 5244, CNRS EPHE UPVD, Université de Perpignan, 52 Avenue Paul Alduy, 66860 Perpignan Cedex, France
| | - Christine Ferrier-Pages
- Centre Scientifique de Monaco, Avenue Saint Martin, MC-98000 Monaco-Ville, Principality of Monaco
| | - Eric Tambutte
- Centre Scientifique de Monaco, Avenue Saint Martin, MC-98000 Monaco-Ville, Principality of Monaco
| | - Sylvie Tambutte
- Centre Scientifique de Monaco, Avenue Saint Martin, MC-98000 Monaco-Ville, Principality of Monaco
| | - Didier Zoccola
- Centre Scientifique de Monaco, Avenue Saint Martin, MC-98000 Monaco-Ville, Principality of Monaco
| | - Denis Allemand
- Centre Scientifique de Monaco, Avenue Saint Martin, MC-98000 Monaco-Ville, Principality of Monaco
| | - Guillaume Mitta
- UMR 5244, CNRS EPHE UPVD, Université de Perpignan, 52 Avenue Paul Alduy, 66860 Perpignan Cedex, France
| |
Collapse
|
18
|
Perez S, Weis V. Cyclophilin and the regulation of symbiosis in Aiptasia pallida. THE BIOLOGICAL BULLETIN 2008; 215:63-72. [PMID: 18723638 DOI: 10.2307/25470684] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The sea anemone Aiptasia pallida, symbiotic with intracellular dinoflagellates, expresses a peptydyl-prolyl cis-trans isomerase (PPIase) belonging to the conserved family of cytosolic cyclophilins (ApCypA). Protein extracts from A. pallida exhibited PPIase activity. Given the high degree of conservation of ApCypA and its known function in the cellular stress response, we hypothesized that it plays a similar role in the cnidarian-dinoflagellate symbiosis. To explore its role, we inhibited the activity of cyclophilin with cyclosporin A (CsA). CsA effectively inhibited the PPIase activity of protein extracts from symbiotic A. pallida. CsA also induced the dose-dependent release of symbiotic algae from host tissues (bleaching). Laser scanning confocal microscopy using superoxide and nitric oxide-sensitive fluorescent dyes on live specimens of A. pallida revealed that CsA strongly induced the production of these known mediators of bleaching. We tested whether the CsA-sensitive isomerase activity is important for maintaining the activity of the antioxidant enzyme superoxide dismutase (SOD). SOD activity of protein extracts was not affected by pre-incubation with CsA in vitro.
Collapse
Affiliation(s)
- S Perez
- Department of Zoology, Oregon State University, Corvallis, Oregon 97331, USA.
| | | |
Collapse
|
19
|
Yellowlees D, Rees TAV, Leggat W. Metabolic interactions between algal symbionts and invertebrate hosts. PLANT, CELL & ENVIRONMENT 2008; 31:679-94. [PMID: 18315536 DOI: 10.1111/j.1365-3040.2008.01802.x] [Citation(s) in RCA: 268] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Some invertebrates have enlisted autotrophic unicellular algae to provide a competitive metabolic advantage in nutritionally demanding habitats. These symbioses exist primarily but not exclusively in shallow tropical oceanic waters where clear water and low nutrient levels provide maximal advantage to the association. Mostly, the endosymbiotic algae are localized in host cells surrounded by a host-derived membrane (symbiosome). This anatomy has required adaptation of the host biochemistry to allow transport of the normally excreted inorganic nutrients (CO2, NH3 and PO43-) to the alga. In return, the symbiont supplies photosynthetic products to the host to meet its energy demands. Most attention has focused on the metabolism of CO2 and nitrogen sources. Carbon-concentrating mechanisms are a feature of all algae, but the products exported to the host following photosynthetic CO2 fixation vary. Identification of the stimulus for release of algal photosynthate in hospite remains elusive. Nitrogen assimilation within the symbiosis is an essential element in the host's control over the alga. Recent studies have concentrated on cnidarians because of the impact of global climate change resulting in coral bleaching. The loss of the algal symbiont and its metabolic contribution to the host has the potential to result in the transition from a coral-dominated to an algal-dominated ecosystem.
Collapse
Affiliation(s)
- David Yellowlees
- ARC Centre of Excellence for Coral Reef Studies and School of Pharmacy & Molecular Sciences, James Cook University, Townsville, Queensland 4811, Australia.
| | | | | |
Collapse
|