1
|
Satish L, Krill-Burger JM, Gallo PH, Etages SD, Liu F, Philips BJ, Ravuri S, Marra KG, LaFramboise WA, Kathju S, Rubin JP. Expression analysis of human adipose-derived stem cells during in vitro differentiation to an adipocyte lineage. BMC Med Genomics 2015. [PMID: 26205789 PMCID: PMC4513754 DOI: 10.1186/s12920-015-0119-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background Adipose tissue-derived stromal stem cells (ASCs) represent a promising regenerative resource for soft tissue reconstruction. Although autologous grafting of whole fat has long been practiced, a major clinical limitation of this technique is inconsistent long-term graft retention. To understand the changes in cell function during the transition of ASCs into fully mature fat cells, we compared the transcriptome profiles of cultured undifferentiated human primary ASCs under conditions leading to acquisition of a mature adipocyte phenotype. Methods Microarray analysis was performed on total RNA extracted from separate ACS isolates of six human adult females before and after 7 days (7 days: early stage) and 21 days (21 days: late stage) of adipocyte differentiation in vitro. Differential gene expression profiles were determined using Partek Genomics Suite Version 6.4 for analysis of variance (ANOVA) based on time in culture. We also performed unsupervised hierarchical clustering to test for gene expression patterns among the three cell populations. Ingenuity Pathway Analysis was used to determine biologically significant networks and canonical pathways relevant to adipogenesis. Results Cells at each stage showed remarkable intra-group consistency of expression profiles while abundant differences were detected across stages and groups. More than 14,000 transcripts were significantly altered during differentiation while ~6000 transcripts were affected between 7 days and 21 days cultures. Setting a cutoff of +/-two-fold change, 1350 transcripts were elevated while 2929 genes were significantly decreased by 7 days. Comparison of early and late stage cultures revealed increased expression of 1107 transcripts while 606 genes showed significantly reduced expression. In addition to confirming differential expression of known markers of adipogenesis (e.g., FABP4, ADIPOQ, PLIN4), multiple genes and signaling pathways not previously known to be involved in regulating adipogenesis were identified (e.g. POSTN, PPP1R1A, FGF11) as potential novel mediators of adipogenesis. Quantitative RT-PCR validated the microarray results. Conclusions ASC maturation into an adipocyte phenotype proceeds from a gene expression program that involves thousands of genes. This is the first study to compare mRNA expression profiles during early and late stage adipogenesis using cultured human primary ASCs from multiple patients. Electronic supplementary material The online version of this article (doi:10.1186/s12920-015-0119-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Latha Satish
- Department of Plastic Surgery, University of Pittsburgh Medical Center, 3550 Terrace Street, 6B Scaife Hall, 15261, Pittsburgh, PA, USA.,McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA
| | | | - Phillip H Gallo
- Department of Plastic Surgery, University of Pittsburgh Medical Center, 3550 Terrace Street, 6B Scaife Hall, 15261, Pittsburgh, PA, USA
| | | | - Fang Liu
- Department of Plastic Surgery, University of Pittsburgh Medical Center, 3550 Terrace Street, 6B Scaife Hall, 15261, Pittsburgh, PA, USA
| | - Brian J Philips
- Department of Plastic Surgery, University of Pittsburgh Medical Center, 3550 Terrace Street, 6B Scaife Hall, 15261, Pittsburgh, PA, USA
| | - Sudheer Ravuri
- Department of Plastic Surgery, University of Pittsburgh Medical Center, 3550 Terrace Street, 6B Scaife Hall, 15261, Pittsburgh, PA, USA
| | - Kacey G Marra
- Department of Plastic Surgery, University of Pittsburgh Medical Center, 3550 Terrace Street, 6B Scaife Hall, 15261, Pittsburgh, PA, USA.,McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA
| | | | - Sandeep Kathju
- Department of Plastic Surgery, University of Pittsburgh Medical Center, 3550 Terrace Street, 6B Scaife Hall, 15261, Pittsburgh, PA, USA.,McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA
| | - J Peter Rubin
- Department of Plastic Surgery, University of Pittsburgh Medical Center, 3550 Terrace Street, 6B Scaife Hall, 15261, Pittsburgh, PA, USA. .,McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
2
|
Hausman GJ, Basu U, Wei S, Hausman DB, Dodson MV. Preadipocyte and adipose tissue differentiation in meat animals: influence of species and anatomical location. Annu Rev Anim Biosci 2015; 2:323-51. [PMID: 25384146 DOI: 10.1146/annurev-animal-022513-114211] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Early in porcine adipose tissue development, the stromal-vascular (SV) elements control and dictate the extent of adipogenesis in a depot-dependent manner. The vasculature and collagen matrix differentiate before overt adipocyte differentiation. In the fetal pig, subcutaneous (SQ) layer development is predictive of adipocyte development, as the outer, middle, and inner layers of dorsal SQ adipose tissue develop and maintain layered morphology throughout postnatal growth of SQ adipose tissue. Bovine and ovine fetuses contain brown adipose tissue but SQ white adipose tissue is poorly developed structurally. Fetal adipose tissue differentiation is associated with the precocious expression of several genes encoding secreted factors and key transcription factors like peroxisome proliferator activated receptor (PPAR)γ and CCAAT/-enhancer-binding protein. Identification of adipocyte-associated genes differentially expressed by age, depot, and species in vivo and in vitro has been achieved using single-gene analysis, microarrays, suppressive subtraction hybridization, and next-generation sequencing applications. Gene polymorphisms in PPARγ, cathepsins, and uncoupling protein 3 have been associated with back fat accumulation. Genome scans have mapped several quantitative trait loci (QTL) predictive of adipose tissue-deposition phenotypes in cattle and pigs.
Collapse
|
3
|
Chen Q, Zeng Y, Wang H, Yang L, Yang Y, Zhu H, Shi Y, Chen W, Hu Y. Molecular characterization and expression analysis of NDUFS4 gene in m. longissimus dorsi of Laiwu pig (Sus scrofa). Mol Biol Rep 2012; 40:1599-608. [PMID: 23073781 DOI: 10.1007/s11033-012-2208-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 10/09/2012] [Indexed: 01/13/2023]
Abstract
To study the molecular basis of intramuscular fat (IMF) deposition, suppression subtractive hybridization was used to investigate the differences in gene expression between m. longissimus dorsi (LD) of high IMF Laiwu pig group and low IMF Laiwu pig group. From two specific subtractive cDNA libraries, the expression-upregulated clone HL-27 was selected by reverse Northern high-density blot, and then identified to be pig mitochondrial NADH dehydrogenase (ubiquinone) Fe-S protein 4 (NDUFS4). Pig NDUFS4 full-length cDNA was cloned by RACE, and contains a 528 bp-open reading frame (ORF) encoding 175 amino acid residues. The derived amino acid sequence of NDUFS4 is well conserved compared with NDUFS4 of various species with higher degree of sequence similarity with other mammalian (86.3-92.6 %) than amphibian, aves, and fishes (70.2-81.1 %), and contains one N-linked glycosylation site, one O-linked glycosylation site, seven Ser phosphorylation sites and five Thr phosphorylation sites. A-G mutation was found at nt 122 site of ORF between Laiwu pig and Large White, which results in the K-R mutation at 41 site of protein sequence. Real-time PCR analysis indicated that the level of NDUFS4 mRNA expression was higher in high IMF Laiwu pig group than in low IMF Laiwu pig group, and in Laiwu pig than in Large White. The tissue expression of the pig NDUFS4 gene showed a tissue-specific pattern: highly expressed in LD muscle, spleen and kidney, but hardly expressed in lung, stomach and large intestine. The possible role of NDUFS4 and its relation to IMF deposition are discussed.
Collapse
Affiliation(s)
- Qimei Chen
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|